Extension of smooth functions
in infinite dimensions II: manifolds
Studia Mathematica, Tome 150 (2002) no. 3, pp. 215-241
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M$ be a separable C$^\infty $ Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a C$^\infty $ function, or of a C$^\infty $ section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in $M$, extends to a C$^\infty $ function on the whole of $M$.
Keywords:
separable infty finsler manifold infinite dimension proved amongst other results under suitable conditions local extensibility germ infty function infty section vector bundle union closed submanifold closed locally compact set extends infty function whole
Affiliations des auteurs :
C. J. Atkin  1
@article{10_4064_sm150_3_2,
author = {C. J. Atkin},
title = {Extension of smooth functions
in infinite dimensions {II:} manifolds},
journal = {Studia Mathematica},
pages = {215--241},
year = {2002},
volume = {150},
number = {3},
doi = {10.4064/sm150-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-3-2/}
}
C. J. Atkin. Extension of smooth functions in infinite dimensions II: manifolds. Studia Mathematica, Tome 150 (2002) no. 3, pp. 215-241. doi: 10.4064/sm150-3-2
Cité par Sources :