Generalization of the Newman–Shapiro isometry theorem
and Toeplitz operators. II
Studia Mathematica, Tome 150 (2002) no. 2, pp. 175-188
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The Newman–Shapiro Isometry Theorem is proved in the case of Segal–Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the Gaussian measure on ${\mathbb C}^n$). The theorem is applied to find the adjoint of an unbounded Toeplitz operator $T_{\varphi }$ with $\varphi $ being an operator-valued exponential polynomial.
Keywords:
newman shapiro isometry theorem proved segal bargmann spaces entire vector valued functions summable respect gaussian measure mathbb theorem applied adjoint unbounded toeplitz operator varphi varphi being operator valued exponential polynomial
Affiliations des auteurs :
Dariusz Cichoń 1
@article{10_4064_sm150_2_6,
author = {Dariusz Cicho\'n},
title = {Generalization of the {Newman{\textendash}Shapiro} isometry theorem
and {Toeplitz} operators. {II}},
journal = {Studia Mathematica},
pages = {175--188},
year = {2002},
volume = {150},
number = {2},
doi = {10.4064/sm150-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-6/}
}
TY - JOUR AU - Dariusz Cichoń TI - Generalization of the Newman–Shapiro isometry theorem and Toeplitz operators. II JO - Studia Mathematica PY - 2002 SP - 175 EP - 188 VL - 150 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-6/ DO - 10.4064/sm150-2-6 LA - en ID - 10_4064_sm150_2_6 ER -
Dariusz Cichoń. Generalization of the Newman–Shapiro isometry theorem and Toeplitz operators. II. Studia Mathematica, Tome 150 (2002) no. 2, pp. 175-188. doi: 10.4064/sm150-2-6
Cité par Sources :