Uniqueness of the topology on $L^1(G)$
Studia Mathematica, Tome 150 (2002) no. 2, pp. 163-173
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $G$ be a locally compact abelian group and let $X$ be a translation invariant linear subspace of $L^1(G)$. If $G$ is noncompact, then there is at most one Banach space topology on $X$ that makes translations on $X$ continuous. In fact, the Banach space topology on $X$ is determined just by a single nontrivial translation in the case where the dual group $ \widehat {G} $ is connected. For $G$ compact we show that the problem of determining a Banach space topology on $X$ by considering translation operators on $X$ is closely related to the classical problem of determining whether or not there is a discontinuous translation invariant linear functional on $X$. As a matter of fact $L^1(G)$ does not carry a unique Banach space topology that makes translations continuous, but translations almost determine the Banach space topology on $X$. Moreover, if $G$ is connected and compact and $1 p \infty $, then $L^p(G)$ carries a unique Banach space topology that makes translations continuous.
DOI : 10.4064/sm150-2-5
Keywords: locally compact abelian group translation invariant linear subspace noncompact there banach space topology makes translations continuous banach space topology determined just single nontrivial translation where dual group widehat connected compact problem determining banach space topology considering translation operators closely related classical problem determining whether there discontinuous translation invariant linear functional matter does carry unique banach space topology makes translations continuous translations almost determine banach space topology moreover connected compact infty carries unique banach space topology makes translations continuous

J. Extremera  1   ; J. F. Mena  2   ; A. R. Villena  2

1 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada, Spain
2 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 GRANADA, Spain
@article{10_4064_sm150_2_5,
     author = {J. Extremera and J. F. Mena and A. R. Villena},
     title = {Uniqueness of the topology on $L^1(G)$},
     journal = {Studia Mathematica},
     pages = {163--173},
     year = {2002},
     volume = {150},
     number = {2},
     doi = {10.4064/sm150-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-5/}
}
TY  - JOUR
AU  - J. Extremera
AU  - J. F. Mena
AU  - A. R. Villena
TI  - Uniqueness of the topology on $L^1(G)$
JO  - Studia Mathematica
PY  - 2002
SP  - 163
EP  - 173
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-5/
DO  - 10.4064/sm150-2-5
LA  - en
ID  - 10_4064_sm150_2_5
ER  - 
%0 Journal Article
%A J. Extremera
%A J. F. Mena
%A A. R. Villena
%T Uniqueness of the topology on $L^1(G)$
%J Studia Mathematica
%D 2002
%P 163-173
%V 150
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-5/
%R 10.4064/sm150-2-5
%G en
%F 10_4064_sm150_2_5
J. Extremera; J. F. Mena; A. R. Villena. Uniqueness of the topology on $L^1(G)$. Studia Mathematica, Tome 150 (2002) no. 2, pp. 163-173. doi: 10.4064/sm150-2-5

Cité par Sources :