Compactness of the integration operator
associated with a vector measure
Studia Mathematica, Tome 150 (2002) no. 2, pp. 133-149
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A characterization is given of those Banach-space-valued vector measures $m$ with finite variation whose associated integration operator $I_m:f
\mapsto \int f \kern .16667em dm$ is compact as a linear map from $L^1(m)$ into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures $m$ (with finite variation) such that $I_m$ is compact, and other $m$ (still with finite variation) such that $I_m$ is not compact. If $m$ has infinite variation, then $I_m$ is never compact.
Keywords:
characterization given those banach space valued vector measures finite variation whose associated integration operator mapsto int kern compact linear map banach space moreover every infinite dimensional banach space there exist nontrivial vector measures finite variation compact other still finite variation compact has infinite variation never compact
Affiliations des auteurs :
S. Okada 1 ; W. J. Ricker 2 ; L. Rodríguez-Piazza 3
@article{10_4064_sm150_2_3,
author = {S. Okada and W. J. Ricker and L. Rodr{\'\i}guez-Piazza},
title = {Compactness of the integration operator
associated with a vector measure},
journal = {Studia Mathematica},
pages = {133--149},
year = {2002},
volume = {150},
number = {2},
doi = {10.4064/sm150-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/}
}
TY - JOUR AU - S. Okada AU - W. J. Ricker AU - L. Rodríguez-Piazza TI - Compactness of the integration operator associated with a vector measure JO - Studia Mathematica PY - 2002 SP - 133 EP - 149 VL - 150 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/ DO - 10.4064/sm150-2-3 LA - en ID - 10_4064_sm150_2_3 ER -
%0 Journal Article %A S. Okada %A W. J. Ricker %A L. Rodríguez-Piazza %T Compactness of the integration operator associated with a vector measure %J Studia Mathematica %D 2002 %P 133-149 %V 150 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/ %R 10.4064/sm150-2-3 %G en %F 10_4064_sm150_2_3
S. Okada; W. J. Ricker; L. Rodríguez-Piazza. Compactness of the integration operator associated with a vector measure. Studia Mathematica, Tome 150 (2002) no. 2, pp. 133-149. doi: 10.4064/sm150-2-3
Cité par Sources :