Compactness of the integration operator associated with a vector measure
Studia Mathematica, Tome 150 (2002) no. 2, pp. 133-149 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A characterization is given of those Banach-space-valued vector measures $m$ with finite variation whose associated integration operator $I_m:f \mapsto \int f \kern .16667em dm$ is compact as a linear map from $L^1(m)$ into the Banach space. Moreover, in every infinite-dimensional Banach space there exist nontrivial vector measures $m$ (with finite variation) such that $I_m$ is compact, and other $m$ (still with finite variation) such that $I_m$ is not compact. If $m$ has infinite variation, then $I_m$ is never compact.
DOI : 10.4064/sm150-2-3
Keywords: characterization given those banach space valued vector measures finite variation whose associated integration operator mapsto int kern compact linear map banach space moreover every infinite dimensional banach space there exist nontrivial vector measures finite variation compact other still finite variation compact has infinite variation never compact

S. Okada 1 ; W. J. Ricker 2 ; L. Rodríguez-Piazza 3

1 School of Mathematics The University of New South Wales Sydney, NSW 2052, Australia Current address: Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
2 School of Mathematics The University of New South Wales Sydney, NSW 2052, Australia current address Math.-Geogr. Fakutät Katholitsche Universität Eichstätt D-85071 Eichstätt, Germany
3 Departamento de Anáisis Matemático Facultad de Matemáticas Universidad de Sevilla Aptdo. 1160 41080 Sevilla, Spain
@article{10_4064_sm150_2_3,
     author = {S. Okada and W. J. Ricker and L. Rodr{\'\i}guez-Piazza},
     title = {Compactness of the integration operator
associated with a vector measure},
     journal = {Studia Mathematica},
     pages = {133--149},
     year = {2002},
     volume = {150},
     number = {2},
     doi = {10.4064/sm150-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/}
}
TY  - JOUR
AU  - S. Okada
AU  - W. J. Ricker
AU  - L. Rodríguez-Piazza
TI  - Compactness of the integration operator
associated with a vector measure
JO  - Studia Mathematica
PY  - 2002
SP  - 133
EP  - 149
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/
DO  - 10.4064/sm150-2-3
LA  - en
ID  - 10_4064_sm150_2_3
ER  - 
%0 Journal Article
%A S. Okada
%A W. J. Ricker
%A L. Rodríguez-Piazza
%T Compactness of the integration operator
associated with a vector measure
%J Studia Mathematica
%D 2002
%P 133-149
%V 150
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-3/
%R 10.4064/sm150-2-3
%G en
%F 10_4064_sm150_2_3
S. Okada; W. J. Ricker; L. Rodríguez-Piazza. Compactness of the integration operator
associated with a vector measure. Studia Mathematica, Tome 150 (2002) no. 2, pp. 133-149. doi: 10.4064/sm150-2-3

Cité par Sources :