The Shirali–Ford theorem as a consequence of Ptak theory for hermitian Banach algebras
Studia Mathematica, Tome 150 (2002) no. 2, pp. 121-132
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A simple application of Pták theory for hermitian Banach algebras, combined with a result on normed $Q$-algebras, gives a non-technical new proof of the Shirali–Ford theorem. A version of this theorem in the setting of non-normed topological algebras is also provided.
DOI : 10.4064/sm150-2-2
Keywords: simple application theory hermitian banach algebras combined result normed q algebras gives non technical proof shirali ford theorem version theorem setting non normed topological algebras provided

Maria Fragoulopoulou  1

1 Department of Mathematics University of Athens Panepistimiopolis Athens 15784, Greece
@article{10_4064_sm150_2_2,
     author = {Maria Fragoulopoulou},
     title = {The {Shirali{\textendash}Ford} theorem as a consequence {of
Ptak} theory for hermitian {Banach} algebras},
     journal = {Studia Mathematica},
     pages = {121--132},
     year = {2002},
     volume = {150},
     number = {2},
     doi = {10.4064/sm150-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-2/}
}
TY  - JOUR
AU  - Maria Fragoulopoulou
TI  - The Shirali–Ford theorem as a consequence of
Ptak theory for hermitian Banach algebras
JO  - Studia Mathematica
PY  - 2002
SP  - 121
EP  - 132
VL  - 150
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-2/
DO  - 10.4064/sm150-2-2
LA  - en
ID  - 10_4064_sm150_2_2
ER  - 
%0 Journal Article
%A Maria Fragoulopoulou
%T The Shirali–Ford theorem as a consequence of
Ptak theory for hermitian Banach algebras
%J Studia Mathematica
%D 2002
%P 121-132
%V 150
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm150-2-2/
%R 10.4064/sm150-2-2
%G en
%F 10_4064_sm150_2_2
Maria Fragoulopoulou. The Shirali–Ford theorem as a consequence of
Ptak theory for hermitian Banach algebras. Studia Mathematica, Tome 150 (2002) no. 2, pp. 121-132. doi: 10.4064/sm150-2-2

Cité par Sources :