A simplification in the proof of the non-isomorphism between $H^1(\delta )$ and $H^1(\delta ^2)$
Studia Mathematica, Tome 150 (2002) no. 1, pp. 13-16

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The proof that $H^1(\delta )$ and $H^1(\delta ^2)$ are not isomorphic is simplified. This is done by giving a new and simple proof to a martingale inequality of J. Bourgain.
DOI : 10.4064/sm150-1-2
Keywords: proof delta delta isomorphic simplified done giving simple proof martingale inequality bourgain

Paul F. X. Müller 1

1 Institut f. Analysis u. Numerik J. Kepler Universität Linz A-4040 Linz, Austria
@article{10_4064_sm150_1_2,
     author = {Paul F. X. M\"uller},
     title = {A simplification in the proof of the non-isomorphism
 between $H^1(\delta )$ and $H^1(\delta ^2)$},
     journal = {Studia Mathematica},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2002},
     doi = {10.4064/sm150-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-2/}
}
TY  - JOUR
AU  - Paul F. X. Müller
TI  - A simplification in the proof of the non-isomorphism
 between $H^1(\delta )$ and $H^1(\delta ^2)$
JO  - Studia Mathematica
PY  - 2002
SP  - 13
EP  - 16
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-2/
DO  - 10.4064/sm150-1-2
LA  - en
ID  - 10_4064_sm150_1_2
ER  - 
%0 Journal Article
%A Paul F. X. Müller
%T A simplification in the proof of the non-isomorphism
 between $H^1(\delta )$ and $H^1(\delta ^2)$
%J Studia Mathematica
%D 2002
%P 13-16
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-2/
%R 10.4064/sm150-1-2
%G en
%F 10_4064_sm150_1_2
Paul F. X. Müller. A simplification in the proof of the non-isomorphism
 between $H^1(\delta )$ and $H^1(\delta ^2)$. Studia Mathematica, Tome 150 (2002) no. 1, pp. 13-16. doi: 10.4064/sm150-1-2

Cité par Sources :