The non-pluripolarity of compact sets in complex spaces
and the property $({\rm LB}^{\infty})$ for the space
of germs of holomorphic functions
Studia Mathematica, Tome 150 (2002) no. 1, pp. 1-12
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to establish the equivalence between the non-pluripolarity of a compact set in a complex space and the property $({\rm LB}^\infty )$ for the dual space of the space of germs of holomorphic functions on that compact set.
Keywords:
paper establish equivalence between non pluripolarity compact set complex space property infty dual space space germs holomorphic functions compact set
Affiliations des auteurs :
Le Mau Hai 1 ; Tang Van Long 1
@article{10_4064_sm150_1_1,
author = {Le Mau Hai and Tang Van Long},
title = {The non-pluripolarity of compact sets in complex spaces
and the property $({\rm LB}^{\infty})$ for the space
of germs of holomorphic functions},
journal = {Studia Mathematica},
pages = {1--12},
publisher = {mathdoc},
volume = {150},
number = {1},
year = {2002},
doi = {10.4064/sm150-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-1/}
}
TY - JOUR
AU - Le Mau Hai
AU - Tang Van Long
TI - The non-pluripolarity of compact sets in complex spaces
and the property $({\rm LB}^{\infty})$ for the space
of germs of holomorphic functions
JO - Studia Mathematica
PY - 2002
SP - 1
EP - 12
VL - 150
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-1/
DO - 10.4064/sm150-1-1
LA - en
ID - 10_4064_sm150_1_1
ER -
%0 Journal Article
%A Le Mau Hai
%A Tang Van Long
%T The non-pluripolarity of compact sets in complex spaces
and the property $({\rm LB}^{\infty})$ for the space
of germs of holomorphic functions
%J Studia Mathematica
%D 2002
%P 1-12
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm150-1-1/
%R 10.4064/sm150-1-1
%G en
%F 10_4064_sm150_1_1
Le Mau Hai; Tang Van Long. The non-pluripolarity of compact sets in complex spaces
and the property $({\rm LB}^{\infty})$ for the space
of germs of holomorphic functions. Studia Mathematica, Tome 150 (2002) no. 1, pp. 1-12. doi: 10.4064/sm150-1-1
Cité par Sources :