The harmonic Cesáro and Copson operators on the spaces $L^p({\Bbb R})$, $1\le p \le 2$
Studia Mathematica, Tome 149 (2002) no. 3, pp. 267-279

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The harmonic Cesàro operator ${\cal C}$ is defined for a function $f$ in $L^p({\mathbb R})$ for some $1\le p \infty$ by setting ${\cal C}(f) (x) := \int^\infty_x ({f(u)/ u})\, du$ for $x>0$ and ${\cal C}(f)(x) := - \int^x_{-\infty} ({f(u)/ u}) \, du$ for $x0$; the harmonic Copson operator $\mathbb C^*$ is defined for a function $f$ in $L^1_{{\rm loc}} ({\mathbb R})$ by setting ${\cal C}^*(f) (x) := ({1/ x}) \int^x_0 f(u)\, du$ for $x\not= 0$. The notation indicates that $\mathbb C$ and $\mathbb C^*$ are adjoint operators in a certain sense.We present rigorous proofs of the following two commuting relations: (i) If $f\in L^p ({\mathbb R})$ for some $1\le p \le 2$, then $({\cal C}(f))^\wedge (t) = {\cal C}^* (\skew3\widehat{f}\hskip1pt)(t)$ a.e., where $\skew3\widehat{f}$ denotes the Fourier transform of $f$. (ii) If $f\in L^p ({\mathbb R})$ for some $1 p\le 2$, then $({\cal C}^* (f))^\wedge (t)={\cal C} (\skew3\widehat{f}\hskip1pt) (t)$ a.e. As a by-product of our proofs, we obtain representations of $({\cal C}(f))^\wedge (t)$ and $({\cal C}^*(f))^\wedge (t)$ in terms of Lebesgue integrals in case $f$ belongs to $L^p({\mathbb R})$ for some $1 p\le 2$. These representations are valid for almost every $t$ and may be useful in other contexts.
DOI : 10.4064/sm149-3-4
Keywords: harmonic ces operator cal defined function mathbb infty setting cal int infty cal int infty harmonic copson operator mathbb * defined function loc mathbb setting cal * int notation indicates mathbb mathbb * adjoint operators certain sense present rigorous proofs following commuting relations mathbb cal wedge cal * skew widehat hskip where skew widehat denotes fourier transform mathbb cal * wedge cal skew widehat hskip by product proofs obtain representations cal wedge cal * wedge terms lebesgue integrals belongs mathbb these representations valid almost every may useful other contexts

Ferenc Móricz 1

1 Bolyai Institute University of Szeged Aradi Vértanúk Tere 1 6720 Szeged, Hungary
@article{10_4064_sm149_3_4,
     author = {Ferenc M\'oricz},
     title = {The harmonic {Ces\'aro} and {Copson} operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$},
     journal = {Studia Mathematica},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {149},
     number = {3},
     year = {2002},
     doi = {10.4064/sm149-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-3-4/}
}
TY  - JOUR
AU  - Ferenc Móricz
TI  - The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$
JO  - Studia Mathematica
PY  - 2002
SP  - 267
EP  - 279
VL  - 149
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm149-3-4/
DO  - 10.4064/sm149-3-4
LA  - en
ID  - 10_4064_sm149_3_4
ER  - 
%0 Journal Article
%A Ferenc Móricz
%T The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$
%J Studia Mathematica
%D 2002
%P 267-279
%V 149
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm149-3-4/
%R 10.4064/sm149-3-4
%G en
%F 10_4064_sm149_3_4
Ferenc Móricz. The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$. Studia Mathematica, Tome 149 (2002) no. 3, pp. 267-279. doi: 10.4064/sm149-3-4

Cité par Sources :