The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$
Studia Mathematica, Tome 149 (2002) no. 3, pp. 267-279
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The harmonic Cesàro operator ${\cal C}$
is defined for a function $f$ in $L^p({\mathbb R})$ for some
$1\le p \infty$ by setting ${\cal C}(f) (x) :=
\int^\infty_x ({f(u)/ u})\, du$ for $x>0$ and ${\cal C}(f)(x)
:= - \int^x_{-\infty}
({f(u)/ u}) \, du$ for $x0$; the harmonic Copson operator $\mathbb C^*$ is
defined for a function $f$ in $L^1_{{\rm loc}} ({\mathbb R})$ by setting
${\cal C}^*(f) (x)
:= ({1/ x}) \int^x_0 f(u)\, du$ for $x\not= 0$. The notation indicates that
$\mathbb C$ and $\mathbb C^*$ are adjoint operators in a certain sense.We present rigorous proofs of the following two commuting relations:
(i) If $f\in L^p ({\mathbb R})$ for some $1\le p \le 2$,
then $({\cal C}(f))^\wedge (t) = {\cal C}^* (\skew3\widehat{f}\hskip1pt)(t)$ a.e.,
where $\skew3\widehat{f}$ denotes the Fourier transform of $f$. (ii) If $f\in L^p ({\mathbb R})$ for some $1 p\le 2$,
then $({\cal C}^* (f))^\wedge (t)={\cal C} (\skew3\widehat{f}\hskip1pt) (t)$ a.e.
As a by-product of our proofs, we obtain representations of
$({\cal C}(f))^\wedge (t)$ and $({\cal C}^*(f))^\wedge (t)$
in terms of Lebesgue integrals in case $f$ belongs to $L^p({\mathbb R})$
for some $1 p\le 2$.
These representations are valid for almost every $t$
and may be useful in other contexts.
Keywords:
harmonic ces operator cal defined function mathbb infty setting cal int infty cal int infty harmonic copson operator mathbb * defined function loc mathbb setting cal * int notation indicates mathbb mathbb * adjoint operators certain sense present rigorous proofs following commuting relations mathbb cal wedge cal * skew widehat hskip where skew widehat denotes fourier transform mathbb cal * wedge cal skew widehat hskip by product proofs obtain representations cal wedge cal * wedge terms lebesgue integrals belongs mathbb these representations valid almost every may useful other contexts
Affiliations des auteurs :
Ferenc Móricz 1
@article{10_4064_sm149_3_4,
author = {Ferenc M\'oricz},
title = {The harmonic {Ces\'aro} and {Copson} operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$},
journal = {Studia Mathematica},
pages = {267--279},
publisher = {mathdoc},
volume = {149},
number = {3},
year = {2002},
doi = {10.4064/sm149-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-3-4/}
}
TY - JOUR
AU - Ferenc Móricz
TI - The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$
JO - Studia Mathematica
PY - 2002
SP - 267
EP - 279
VL - 149
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm149-3-4/
DO - 10.4064/sm149-3-4
LA - en
ID - 10_4064_sm149_3_4
ER -
Ferenc Móricz. The harmonic Cesáro and Copson operators
on the spaces $L^p({\Bbb R})$, $1\le p \le 2$. Studia Mathematica, Tome 149 (2002) no. 3, pp. 267-279. doi: 10.4064/sm149-3-4
Cité par Sources :