Pointwise inequalities and approximation in fractional Sobolev spaces
Studia Mathematica, Tome 149 (2002) no. 2, pp. 147-174

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a function belonging to a fractional Sobolev space $L^{\alpha ,p}({\mathbb R}^n)$ may be approximated in capacity and norm by smooth functions belonging to $C^{m,\lambda } ({\mathbb R}^n)$, $0 m + \lambda \alpha $. Our results generalize and extend those of [12], [4], [14], and [11].
DOI : 10.4064/sm149-2-5
Keywords: prove function belonging fractional sobolev space alpha mathbb may approximated capacity norm smooth functions belonging lambda mathbb lambda alpha results generalize extend those

David Swanson 1

1 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_sm149_2_5,
     author = {David Swanson},
     title = {Pointwise inequalities and approximation in
fractional {Sobolev} spaces},
     journal = {Studia Mathematica},
     pages = {147--174},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2002},
     doi = {10.4064/sm149-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-5/}
}
TY  - JOUR
AU  - David Swanson
TI  - Pointwise inequalities and approximation in
fractional Sobolev spaces
JO  - Studia Mathematica
PY  - 2002
SP  - 147
EP  - 174
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-5/
DO  - 10.4064/sm149-2-5
LA  - en
ID  - 10_4064_sm149_2_5
ER  - 
%0 Journal Article
%A David Swanson
%T Pointwise inequalities and approximation in
fractional Sobolev spaces
%J Studia Mathematica
%D 2002
%P 147-174
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-5/
%R 10.4064/sm149-2-5
%G en
%F 10_4064_sm149_2_5
David Swanson. Pointwise inequalities and approximation in
fractional Sobolev spaces. Studia Mathematica, Tome 149 (2002) no. 2, pp. 147-174. doi: 10.4064/sm149-2-5

Cité par Sources :