Pointwise inequalities and approximation in
fractional Sobolev spaces
Studia Mathematica, Tome 149 (2002) no. 2, pp. 147-174
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that a function belonging to a fractional Sobolev space $L^{\alpha ,p}({\mathbb R}^n)$ may be approximated in capacity and norm by smooth functions belonging to $C^{m,\lambda } ({\mathbb R}^n)$, $0 m + \lambda \alpha $. Our results generalize and extend those of [12], [4], [14], and [11].
Keywords:
prove function belonging fractional sobolev space alpha mathbb may approximated capacity norm smooth functions belonging lambda mathbb lambda alpha results generalize extend those
Affiliations des auteurs :
David Swanson 1
@article{10_4064_sm149_2_5,
author = {David Swanson},
title = {Pointwise inequalities and approximation in
fractional {Sobolev} spaces},
journal = {Studia Mathematica},
pages = {147--174},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {2002},
doi = {10.4064/sm149-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-5/}
}
TY - JOUR AU - David Swanson TI - Pointwise inequalities and approximation in fractional Sobolev spaces JO - Studia Mathematica PY - 2002 SP - 147 EP - 174 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-5/ DO - 10.4064/sm149-2-5 LA - en ID - 10_4064_sm149_2_5 ER -
David Swanson. Pointwise inequalities and approximation in fractional Sobolev spaces. Studia Mathematica, Tome 149 (2002) no. 2, pp. 147-174. doi: 10.4064/sm149-2-5
Cité par Sources :