Podal subspaces on the unit polydisk
Studia Mathematica, Tome 149 (2002) no. 2, pp. 109-120 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Beurling's classical theorem gives a complete characterization of all invariant subspaces in the Hardy space $H^2(D)$. To generalize the theorem to higher dimensions, one is naturally led to determining the structure of each unitary equivalence (resp. similarity) class. This, in turn, requires finding podal (resp. s-podal) points in unitary (resp. similarity) orbits. In this note, we find that H-outer (resp. G-outer) functions play an important role in finding podal (resp. s-podal) points. By the methods developed in this note, we can assess when a unitary (resp. similarity) orbit contains a podal (resp. an s-podal) point, and hence provide examples of orbits without such points.
DOI : 10.4064/sm149-2-2
Keywords: beurlings classical theorem gives complete characterization invariant subspaces hardy space generalize theorem higher dimensions naturally led determining structure each unitary equivalence resp similarity class turn requires finding podal resp s podal points unitary resp similarity orbits note h outer resp g outer functions play important role finding podal resp s podal points methods developed note assess unitary resp similarity orbit contains podal resp s podal point hence provide examples orbits without points

Kunyu Guo  1

1 Department of Mathematics Fudan University Shanghai, 200433, People's Republic of China
@article{10_4064_sm149_2_2,
     author = {Kunyu Guo},
     title = {Podal subspaces on the unit polydisk},
     journal = {Studia Mathematica},
     pages = {109--120},
     year = {2002},
     volume = {149},
     number = {2},
     doi = {10.4064/sm149-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-2/}
}
TY  - JOUR
AU  - Kunyu Guo
TI  - Podal subspaces on the unit polydisk
JO  - Studia Mathematica
PY  - 2002
SP  - 109
EP  - 120
VL  - 149
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-2/
DO  - 10.4064/sm149-2-2
LA  - en
ID  - 10_4064_sm149_2_2
ER  - 
%0 Journal Article
%A Kunyu Guo
%T Podal subspaces on the unit polydisk
%J Studia Mathematica
%D 2002
%P 109-120
%V 149
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm149-2-2/
%R 10.4064/sm149-2-2
%G en
%F 10_4064_sm149_2_2
Kunyu Guo. Podal subspaces on the unit polydisk. Studia Mathematica, Tome 149 (2002) no. 2, pp. 109-120. doi: 10.4064/sm149-2-2

Cité par Sources :