Formulae for joint spectral radii of sets of operators
Studia Mathematica, Tome 149 (2002) no. 1, pp. 23-37
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The formula $\varrho(M)=\max\{\varrho_{\chi}(M),r(M)\}$ is proved for precompact
sets $M$ of weakly compact operators on a Banach space. Here $\varrho(M)$ is the
joint spectral radius (the Rota–Strang radius), $\varrho_{\chi}(M)$ is the
Hausdorff spectral radius (connected with the Hausdorff measure of
noncompactness) and $r(M)$ is the Berger–Wang radius.
Keywords:
formula varrho max varrho chi proved precompact sets weakly compact operators banach space here varrho joint spectral radius rota strang radius varrho chi hausdorff spectral radius connected hausdorff measure noncompactness berger wang radius
Affiliations des auteurs :
Victor S. Shulman 1 ; Yuriĭ V. Turovskii 2
@article{10_4064_sm149_1_2,
author = {Victor S. Shulman and Yuri\u{i} V. Turovskii},
title = {Formulae for joint spectral radii of sets of operators},
journal = {Studia Mathematica},
pages = {23--37},
publisher = {mathdoc},
volume = {149},
number = {1},
year = {2002},
doi = {10.4064/sm149-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm149-1-2/}
}
TY - JOUR AU - Victor S. Shulman AU - Yuriĭ V. Turovskii TI - Formulae for joint spectral radii of sets of operators JO - Studia Mathematica PY - 2002 SP - 23 EP - 37 VL - 149 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm149-1-2/ DO - 10.4064/sm149-1-2 LA - en ID - 10_4064_sm149_1_2 ER -
Victor S. Shulman; Yuriĭ V. Turovskii. Formulae for joint spectral radii of sets of operators. Studia Mathematica, Tome 149 (2002) no. 1, pp. 23-37. doi: 10.4064/sm149-1-2
Cité par Sources :