On the eigenfunction expansion method
for semilinear dissipative equations in bounded domains
and the Kuramoto–Sivashinsky equation in a ball
Studia Mathematica, Tome 148 (2001) no. 3, pp. 221-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Presented herein is a method of constructing solutions of
semilinear dissipative evolution equations in bounded domains.
For small initial data this approach permits one to represent
the solution in the form of an eigenfunction expansion series
and to calculate the higher-order long-time asymptotics. It is
applied to the spatially 3D Kuramoto–Sivashinsky equation in
the unit ball $B$ in the linearly stable case. A global-in-time
mild solution is constructed in the space $C^0([0,\infty
),H_0^s(B))$, $s2,$ and the uniqueness is proved for
$-1+\varepsilon \leq s2$, where $\varepsilon >0$ is small$.$
The second-order long-time asymptotics is calculated.
Keywords:
presented herein method constructing solutions semilinear dissipative evolution equations bounded domains small initial approach permits represent solution form eigenfunction expansion series calculate higher order long time asymptotics applied spatially kuramoto sivashinsky equation unit ball linearly stable global in time mild solution constructed space infty uniqueness proved varepsilon leq where varepsilon small second order long time asymptotics calculated
Affiliations des auteurs :
V. V. Varlamov 1
@article{10_4064_sm148_3_3,
author = {V. V. Varlamov},
title = {On the eigenfunction expansion method
for semilinear dissipative equations in bounded domains
and the {Kuramoto{\textendash}Sivashinsky} equation in a ball},
journal = {Studia Mathematica},
pages = {221--249},
publisher = {mathdoc},
volume = {148},
number = {3},
year = {2001},
doi = {10.4064/sm148-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm148-3-3/}
}
TY - JOUR AU - V. V. Varlamov TI - On the eigenfunction expansion method for semilinear dissipative equations in bounded domains and the Kuramoto–Sivashinsky equation in a ball JO - Studia Mathematica PY - 2001 SP - 221 EP - 249 VL - 148 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm148-3-3/ DO - 10.4064/sm148-3-3 LA - en ID - 10_4064_sm148_3_3 ER -
%0 Journal Article %A V. V. Varlamov %T On the eigenfunction expansion method for semilinear dissipative equations in bounded domains and the Kuramoto–Sivashinsky equation in a ball %J Studia Mathematica %D 2001 %P 221-249 %V 148 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm148-3-3/ %R 10.4064/sm148-3-3 %G en %F 10_4064_sm148_3_3
V. V. Varlamov. On the eigenfunction expansion method for semilinear dissipative equations in bounded domains and the Kuramoto–Sivashinsky equation in a ball. Studia Mathematica, Tome 148 (2001) no. 3, pp. 221-249. doi: 10.4064/sm148-3-3
Cité par Sources :