An exact functional Radon–Nikodym theorem
for Daniell integrals
Studia Mathematica, Tome 148 (2001) no. 2, pp. 97-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given two positive Daniell integrals $I$ and $J$, with $J$
absolutely continuous with respect to $I$, we find sufficient
conditions in order to obtain an exact Radon–Nikodym
derivative $f$ of $J$ with respect to $ I$. The procedure of
obtaining $f$ is constructive.
Keywords:
given positive daniell integrals absolutely continuous respect sufficient conditions order obtain exact radon nikodym derivative respect procedure obtaining constructive
Affiliations des auteurs :
E. de Amo 1 ; I. Chitescu 2 ; M. Díaz Carrillo 3
@article{10_4064_sm148_2_1,
author = {E. de Amo and I. Chitescu and M. D{\'\i}az Carrillo},
title = {An exact functional {Radon{\textendash}Nikodym} theorem
for {Daniell} integrals},
journal = {Studia Mathematica},
pages = {97--110},
publisher = {mathdoc},
volume = {148},
number = {2},
year = {2001},
doi = {10.4064/sm148-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm148-2-1/}
}
TY - JOUR AU - E. de Amo AU - I. Chitescu AU - M. Díaz Carrillo TI - An exact functional Radon–Nikodym theorem for Daniell integrals JO - Studia Mathematica PY - 2001 SP - 97 EP - 110 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm148-2-1/ DO - 10.4064/sm148-2-1 LA - en ID - 10_4064_sm148_2_1 ER -
%0 Journal Article %A E. de Amo %A I. Chitescu %A M. Díaz Carrillo %T An exact functional Radon–Nikodym theorem for Daniell integrals %J Studia Mathematica %D 2001 %P 97-110 %V 148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm148-2-1/ %R 10.4064/sm148-2-1 %G en %F 10_4064_sm148_2_1
E. de Amo; I. Chitescu; M. Díaz Carrillo. An exact functional Radon–Nikodym theorem for Daniell integrals. Studia Mathematica, Tome 148 (2001) no. 2, pp. 97-110. doi: 10.4064/sm148-2-1
Cité par Sources :