On the Kaczmarz algorithm of approximation
in infinite-dimensional spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 148 (2001) no. 1, pp. 75-86
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              The Kaczmarz algorithm of successive projections suggests
the following concept. A sequence $(e_k)$ of unit vectors in a
Hilbert space is said to be effective if for each vector
$x$ in the space the sequence $(x_n)$ converges to $x$ where
$(x_n)$ is defined inductively: $ x_0 =0$ and $x_n = x_{n-1}
+\alpha _n e_n$, where $\alpha _n = \langle
x-x_{n-1},e_n\rangle $. We prove the effectivity of
some sequences in Hilbert spaces. We generalize the concept of
effectivity to sequences of vectors in Banach spaces and we
prove some results for this more general concept.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
kaczmarz algorithm successive projections suggests following concept sequence unit vectors hilbert space said effective each vector space sequence converges where defined inductively n alpha where alpha langle x x n rangle prove effectivity sequences hilbert spaces generalize concept effectivity sequences vectors banach spaces prove results general concept
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Stanis/law Kwapie/n 1 ; Jan Mycielski 2
@article{10_4064_sm148_1_7,
     author = {Stanis/law Kwapie/n and Jan Mycielski},
     title = {On the {Kaczmarz} algorithm of approximation
in infinite-dimensional spaces},
     journal = {Studia Mathematica},
     pages = {75--86},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2001},
     doi = {10.4064/sm148-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-7/}
}
                      
                      
                    TY - JOUR AU - Stanis/law Kwapie/n AU - Jan Mycielski TI - On the Kaczmarz algorithm of approximation in infinite-dimensional spaces JO - Studia Mathematica PY - 2001 SP - 75 EP - 86 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-7/ DO - 10.4064/sm148-1-7 LA - en ID - 10_4064_sm148_1_7 ER -
%0 Journal Article %A Stanis/law Kwapie/n %A Jan Mycielski %T On the Kaczmarz algorithm of approximation in infinite-dimensional spaces %J Studia Mathematica %D 2001 %P 75-86 %V 148 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-7/ %R 10.4064/sm148-1-7 %G en %F 10_4064_sm148_1_7
Stanis/law Kwapie/n; Jan Mycielski. On the Kaczmarz algorithm of approximation in infinite-dimensional spaces. Studia Mathematica, Tome 148 (2001) no. 1, pp. 75-86. doi: 10.4064/sm148-1-7
Cité par Sources :