An upper bound for the distance to
finitely generated ideals in Douglas algebras
Studia Mathematica, Tome 148 (2001) no. 1, pp. 23-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f$ be a function in the Douglas algebra $A$ and let $I$
be a finitely generated ideal in $A$. We give an estimate for
the distance from $f$ to $I$ that allows us to generalize a
result obtained by Bourgain for $H^\infty $ to arbitrary Douglas
algebras.
Keywords:
function douglas algebra finitely generated ideal estimate distance allows generalize result obtained bourgain infty arbitrary douglas algebras
Affiliations des auteurs :
Pamela Gorkin 1 ; Raymond Mortini 2 ; Daniel Suárez 3
@article{10_4064_sm148_1_3,
author = {Pamela Gorkin and Raymond Mortini and Daniel Su\'arez},
title = {An upper bound for the distance to
finitely generated ideals in {Douglas} algebras},
journal = {Studia Mathematica},
pages = {23--36},
publisher = {mathdoc},
volume = {148},
number = {1},
year = {2001},
doi = {10.4064/sm148-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-3/}
}
TY - JOUR AU - Pamela Gorkin AU - Raymond Mortini AU - Daniel Suárez TI - An upper bound for the distance to finitely generated ideals in Douglas algebras JO - Studia Mathematica PY - 2001 SP - 23 EP - 36 VL - 148 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-3/ DO - 10.4064/sm148-1-3 LA - en ID - 10_4064_sm148_1_3 ER -
%0 Journal Article %A Pamela Gorkin %A Raymond Mortini %A Daniel Suárez %T An upper bound for the distance to finitely generated ideals in Douglas algebras %J Studia Mathematica %D 2001 %P 23-36 %V 148 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm148-1-3/ %R 10.4064/sm148-1-3 %G en %F 10_4064_sm148_1_3
Pamela Gorkin; Raymond Mortini; Daniel Suárez. An upper bound for the distance to finitely generated ideals in Douglas algebras. Studia Mathematica, Tome 148 (2001) no. 1, pp. 23-36. doi: 10.4064/sm148-1-3
Cité par Sources :