Narrow operators and rich subspaces of Banach spaces with the Daugavet property
Studia Mathematica, Tome 147 (2001) no. 3, pp. 269-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on $X$ which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces $X$ with the Daugavet property previously studied in the context of the classical spaces $C(K)$ and $L_{1}(\mu )$.
DOI : 10.4064/sm147-3-5
Keywords: banach space introduce formal approach which seems useful study those properties operators which depend only norms images elements approach applied daugavet equation norms operators particular develop general theory narrow operators rich subspaces spaces daugavet property previously studied context classical spaces

Vladimir M. Kadets 1 ; Roman V. Shvidkoy 2 ; Dirk Werner 3

1 Faculty of Mechanics and Mathematics Kharkov National University pl. Svobody 4, 61077 Kharkov, Ukraine Current address Department of Mathematics Freie Universität Berlin Arnimallee 2–6 D-14195 Berlin, Germany
2 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
3 Department of Mathematics Freie Universität Berlin Arnimallee 2–6 D-14195 Berlin, Germany
@article{10_4064_sm147_3_5,
     author = {Vladimir M. Kadets and Roman V. Shvidkoy and Dirk Werner},
     title = {Narrow operators and rich subspaces {of
Banach} spaces with the {Daugavet} property},
     journal = {Studia Mathematica},
     pages = {269--298},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {2001},
     doi = {10.4064/sm147-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-3-5/}
}
TY  - JOUR
AU  - Vladimir M. Kadets
AU  - Roman V. Shvidkoy
AU  - Dirk Werner
TI  - Narrow operators and rich subspaces of
Banach spaces with the Daugavet property
JO  - Studia Mathematica
PY  - 2001
SP  - 269
EP  - 298
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm147-3-5/
DO  - 10.4064/sm147-3-5
LA  - en
ID  - 10_4064_sm147_3_5
ER  - 
%0 Journal Article
%A Vladimir M. Kadets
%A Roman V. Shvidkoy
%A Dirk Werner
%T Narrow operators and rich subspaces of
Banach spaces with the Daugavet property
%J Studia Mathematica
%D 2001
%P 269-298
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm147-3-5/
%R 10.4064/sm147-3-5
%G en
%F 10_4064_sm147_3_5
Vladimir M. Kadets; Roman V. Shvidkoy; Dirk Werner. Narrow operators and rich subspaces of
Banach spaces with the Daugavet property. Studia Mathematica, Tome 147 (2001) no. 3, pp. 269-298. doi: 10.4064/sm147-3-5

Cité par Sources :