Unicellularity of the multiplication
operator on Banach spaces of formal power series
Studia Mathematica, Tome 147 (2001) no. 3, pp. 201-209
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\{\beta(n)\}^{\infty}_{n=0}$ be a sequence of positive numbers and
$1 \leq p \infty$. We consider the space $\ell^{p}(\beta)$ of all power series
$f(z)\hskip-2pt =\hskip-2pt \sum^{\infty}_{n=0} \skew4\widehat{f}(n)z^{n}$ such that $\sum_{n=0}^{\infty}
|\skew4\widehat{f}(n)|^{p}|\beta(n)|^{p} \infty$.
We give some sufficient conditions for the multiplication operator, $M_{z}$, to
be unicellular on the Banach space $\ell^{p}(\beta)$.
This generalizes the main results obtained by Lu Fang [1].
Keywords:
beta infty sequence positive numbers leq infty consider space ell beta power series hskip hskip sum infty skew widehat sum infty skew widehat beta infty sufficient conditions multiplication operator unicellular banach space ell beta generalizes main results obtained fang nbsp
Affiliations des auteurs :
B. Yousefi 1
@article{10_4064_sm147_3_1,
author = {B. Yousefi},
title = {Unicellularity of the multiplication
operator on {Banach} spaces of formal power series},
journal = {Studia Mathematica},
pages = {201--209},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {2001},
doi = {10.4064/sm147-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-3-1/}
}
TY - JOUR AU - B. Yousefi TI - Unicellularity of the multiplication operator on Banach spaces of formal power series JO - Studia Mathematica PY - 2001 SP - 201 EP - 209 VL - 147 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-3-1/ DO - 10.4064/sm147-3-1 LA - en ID - 10_4064_sm147_3_1 ER -
B. Yousefi. Unicellularity of the multiplication operator on Banach spaces of formal power series. Studia Mathematica, Tome 147 (2001) no. 3, pp. 201-209. doi: 10.4064/sm147-3-1
Cité par Sources :