Local dual spaces of a Banach space
Studia Mathematica, Tome 147 (2001) no. 2, pp. 155-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the local dual spaces of a Banach space $X$,
which can be described as the subspaces of $X^*$ that have the
properties that the principle of local reflexivity attributes to
$X$ as a subspace of $X^{**}$. We give several
characterizations of local dual spaces, which allow us to show
many examples. Moreover, every separable space $X$ has a
separable local dual $Z$, and we can choose $Z$ with the metric
approximation property if $X$ has it. We also show that a
separable space containing no copies of $\ell _1$ admits a
smallest local dual.
Keywords:
study local dual spaces banach space which described subspaces * have properties principle local reflexivity attributes subspace ** several characterizations local dual spaces which allow many examples moreover every separable space has separable local dual choose metric approximation property has separable space containing copies ell admits smallest local dual
Affiliations des auteurs :
Manuel González 1 ; Antonio Martínez-Abejón 2
@article{10_4064_sm147_2_4,
author = {Manuel Gonz\'alez and Antonio Mart{\'\i}nez-Abej\'on},
title = {Local dual spaces of a {Banach} space},
journal = {Studia Mathematica},
pages = {155--168},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2001},
doi = {10.4064/sm147-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-4/}
}
TY - JOUR AU - Manuel González AU - Antonio Martínez-Abejón TI - Local dual spaces of a Banach space JO - Studia Mathematica PY - 2001 SP - 155 EP - 168 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-4/ DO - 10.4064/sm147-2-4 LA - en ID - 10_4064_sm147_2_4 ER -
Manuel González; Antonio Martínez-Abejón. Local dual spaces of a Banach space. Studia Mathematica, Tome 147 (2001) no. 2, pp. 155-168. doi: 10.4064/sm147-2-4
Cité par Sources :