Differentiation of Banach-space-valued additive processes
Studia Mathematica, Tome 147 (2001) no. 2, pp. 131-153 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $X$ be a Banach space and $({\mit \Omega } ,{\mit \Sigma } ,\mu )$ be a $\sigma $-finite measure space. Let $L$ be a Banach space of $X$-valued strongly measurable functions on $({\mit \Omega } ,{\mit \Sigma } ,\mu )$. We consider a strongly continuous $d$-dimensional semigroup $T=\{ T(u):u=(u_{1},\mathinner {\ldotp \ldotp \ldotp },u_{d}),\ u_{i}>0$, $1\leq i\leq d\} $ of linear contractions on $L$. We assume that each $T(u)$ has, in a sense, a contraction majorant and that the strong limit $T(0)=\hbox {strong-lim}_{u\rightarrow 0}T(u)$ exists. Then we prove, under some suitable norm conditions on the Banach space $L$, that a differentiation theorem holds for $d$-dimensional bounded processes in $L$ which are additive with respect to the semigroup $T$. This generalizes a differentiation theorem obtained previously by the author under the assumption that $L$ is an $X$-valued $L_{p}$-space, with $1\leq p\infty $.
DOI : 10.4064/sm147-2-3
Keywords: banach space mit omega mit sigma sigma finite measure space banach space x valued strongly measurable functions mit omega mit sigma consider strongly continuous d dimensional semigroup mathinner ldotp ldotp ldotp leq leq linear contractions assume each has sense contraction majorant strong limit hbox strong lim rightarrow exists prove under suitable norm conditions banach space differentiation theorem holds d dimensional bounded processes which additive respect semigroup generalizes differentiation theorem obtained previously author under assumption x valued space leq infty

Ryotaro Sato  1

1 Department of Mathematics Faculty of Science Okayama University Okayama, 700-8530 Japan
@article{10_4064_sm147_2_3,
     author = {Ryotaro Sato},
     title = {Differentiation of {Banach-space-valued} additive processes},
     journal = {Studia Mathematica},
     pages = {131--153},
     year = {2001},
     volume = {147},
     number = {2},
     doi = {10.4064/sm147-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-3/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - Differentiation of Banach-space-valued additive processes
JO  - Studia Mathematica
PY  - 2001
SP  - 131
EP  - 153
VL  - 147
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-3/
DO  - 10.4064/sm147-2-3
LA  - en
ID  - 10_4064_sm147_2_3
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T Differentiation of Banach-space-valued additive processes
%J Studia Mathematica
%D 2001
%P 131-153
%V 147
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm147-2-3/
%R 10.4064/sm147-2-3
%G en
%F 10_4064_sm147_2_3
Ryotaro Sato. Differentiation of Banach-space-valued additive processes. Studia Mathematica, Tome 147 (2001) no. 2, pp. 131-153. doi: 10.4064/sm147-2-3

Cité par Sources :