Measure of weak noncompactness
under complex interpolation
Studia Mathematica, Tome 147 (2001) no. 1, pp. 89-102
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Logarithmic convexity of a measure of weak noncompactness for bounded linear operators under Calderón's complex interpolation is proved. This is a quantitative version for weakly noncompact operators of the following: if $T:A_{0}\rightarrow B_{0}$ or $T:A_{1}\rightarrow B_{1}$ is weakly compact, then so is $T:A_{[\theta ]}\rightarrow B_{[\theta ]}$ for all $0\theta 1$, where $A_{[\theta ]}$ and $B_{[\theta ]}$ are interpolation spaces with respect to the pairs $(A_{0},A_{1})$ and $(B_{0},B_{1})$. Some formulae for this measure and relations to other quantities measuring weak noncompactness are established.
Keywords:
logarithmic convexity measure weak noncompactness bounded linear operators under calder complex interpolation proved quantitative version weakly noncompact operators following rightarrow rightarrow weakly compact theta rightarrow theta theta where theta theta interpolation spaces respect pairs formulae measure relations other quantities measuring weak noncompactness established
Affiliations des auteurs :
Andrzej Kryczka 1 ; Stanisław Prus 1
@article{10_4064_sm147_1_7,
author = {Andrzej Kryczka and Stanis{\l}aw Prus},
title = {Measure of weak noncompactness
under complex interpolation},
journal = {Studia Mathematica},
pages = {89--102},
publisher = {mathdoc},
volume = {147},
number = {1},
year = {2001},
doi = {10.4064/sm147-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-7/}
}
TY - JOUR AU - Andrzej Kryczka AU - Stanisław Prus TI - Measure of weak noncompactness under complex interpolation JO - Studia Mathematica PY - 2001 SP - 89 EP - 102 VL - 147 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-7/ DO - 10.4064/sm147-1-7 LA - en ID - 10_4064_sm147_1_7 ER -
Andrzej Kryczka; Stanisław Prus. Measure of weak noncompactness under complex interpolation. Studia Mathematica, Tome 147 (2001) no. 1, pp. 89-102. doi: 10.4064/sm147-1-7
Cité par Sources :