Some results on packing in Orlicz sequence spaces
Studia Mathematica, Tome 147 (2001) no. 1, pp. 73-88
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present monotonicity theorems for index functions of
$N$-fuctions, and obtain formulas for exact values of packing
constants. In particular, we show that the Orlicz sequence space
$l^{(N)}$ generated by the $N$-function $N(v)=(1+|v|)\mathop
{\rm ln}\nolimits (1+|v|)-|v|$ with Luxemburg norm has
the Kottman constant $K(l^{(N)})={N^{-1}(1)}/{N^{-1}({1}/{2})}$,
which answers M. M. Rao and
Z. D. Ren's [8] problem.
Keywords:
present monotonicity theorems index functions n fuctions obtain formulas exact values packing constants particular orlicz sequence space generated n function mathop nolimits luxemburg norm has kottman constant which answers rao rens problem
Affiliations des auteurs :
Y. Q. Yan 1
@article{10_4064_sm147_1_6,
author = {Y. Q. Yan},
title = {Some results on packing in {Orlicz} sequence spaces},
journal = {Studia Mathematica},
pages = {73--88},
publisher = {mathdoc},
volume = {147},
number = {1},
year = {2001},
doi = {10.4064/sm147-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-6/}
}
Y. Q. Yan. Some results on packing in Orlicz sequence spaces. Studia Mathematica, Tome 147 (2001) no. 1, pp. 73-88. doi: 10.4064/sm147-1-6
Cité par Sources :