A transplantation theorem for
ultraspherical polynomials at critical index
Studia Mathematica, Tome 147 (2001) no. 1, pp. 51-72
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the behaviour of Fourier coefficients with
respect to the system of ultraspherical polynomials. This leads
us to the study of the “boundary” Lorentz space ${\cal
L}_\lambda $ corresponding to the left endpoint of the mean
convergence interval. The ultraspherical coefficients
$\{ c_n^{(\lambda )}(f)\} $ of
${\cal L}_\lambda $-functions turn out to behave like the
Fourier coefficients of functions in the real Hardy space
$\mathop {\rm Re} H^1$. Namely, we prove that for any
$f\in {\cal L}_\lambda $ the series $\sum _{n=1}^\infty
c_n^{(\lambda )}(f)\mathop {\rm cos}\nolimits n\theta
$ is the Fourier series of some function $\varphi \in \mathop
{\rm Re} H^1$ with $\| \varphi
\| _{\mathop {\rm Re} H^1}\le
c\| f\| _{{\cal L}_\lambda
}$.
Keywords:
investigate behaviour fourier coefficients respect system ultraspherical polynomials leads study boundary lorentz space cal lambda corresponding endpoint mean convergence interval ultraspherical coefficients lambda cal lambda functions turn out behave fourier coefficients functions real hardy space mathop namely prove cal lambda series sum infty lambda mathop cos nolimits theta fourier series function varphi mathop varphi mathop cal lambda
Affiliations des auteurs :
J. J. Guadalupe 1 ; V. I. Kolyada 2
@article{10_4064_sm147_1_5,
author = {J. J. Guadalupe and V. I. Kolyada},
title = {A transplantation theorem for
ultraspherical polynomials at critical index},
journal = {Studia Mathematica},
pages = {51--72},
publisher = {mathdoc},
volume = {147},
number = {1},
year = {2001},
doi = {10.4064/sm147-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-5/}
}
TY - JOUR AU - J. J. Guadalupe AU - V. I. Kolyada TI - A transplantation theorem for ultraspherical polynomials at critical index JO - Studia Mathematica PY - 2001 SP - 51 EP - 72 VL - 147 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-5/ DO - 10.4064/sm147-1-5 LA - en ID - 10_4064_sm147_1_5 ER -
%0 Journal Article %A J. J. Guadalupe %A V. I. Kolyada %T A transplantation theorem for ultraspherical polynomials at critical index %J Studia Mathematica %D 2001 %P 51-72 %V 147 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-5/ %R 10.4064/sm147-1-5 %G en %F 10_4064_sm147_1_5
J. J. Guadalupe; V. I. Kolyada. A transplantation theorem for ultraspherical polynomials at critical index. Studia Mathematica, Tome 147 (2001) no. 1, pp. 51-72. doi: 10.4064/sm147-1-5
Cité par Sources :