Local integrability of strong and iterated maximal functions
Studia Mathematica, Tome 147 (2001) no. 1, pp. 37-50

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M_{\rm S}$ denote the strong maximal operator. Let $M_{x}$ and $M_{y}$ denote the one-dimensional Hardy–Littlewood maximal operators in the horizontal and vertical directions in ${\mathbb R}^{2}$. A function $h$ supported on the unit square $Q = [0,1] \times [0,1]$ is exhibited such that $\int _{Q}M_{y}M_{x}h \infty $ but $\int _{Q}M_{x}M_{y}h = \infty $. It is shown that if $f$ is a function supported on $Q$ such that $\int _{Q}M_{y}M_{x}f \infty $ but $\int _{Q}M_{x}M_{y}f = \infty $, then there exists a set $A$ of finite measure in ${\mathbb R}^{2}$ such that $\int _{A}M_{\rm S}f = \infty $.
DOI : 10.4064/sm147-1-4
Keywords: denote strong maximal operator denote one dimensional hardy littlewood maximal operators horizontal vertical directions mathbb function supported unit square times exhibited int infty int infty shown function supported int infty int infty there exists set finite measure mathbb int infty

Paul Alton Hagelstein 1

1 Department of Mathematics Princeton University Princeton, NJ 08544, U.S.A.
@article{10_4064_sm147_1_4,
     author = {Paul Alton Hagelstein},
     title = {Local integrability of strong and iterated
maximal functions},
     journal = {Studia Mathematica},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2001},
     doi = {10.4064/sm147-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-4/}
}
TY  - JOUR
AU  - Paul Alton Hagelstein
TI  - Local integrability of strong and iterated
maximal functions
JO  - Studia Mathematica
PY  - 2001
SP  - 37
EP  - 50
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-4/
DO  - 10.4064/sm147-1-4
LA  - en
ID  - 10_4064_sm147_1_4
ER  - 
%0 Journal Article
%A Paul Alton Hagelstein
%T Local integrability of strong and iterated
maximal functions
%J Studia Mathematica
%D 2001
%P 37-50
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-4/
%R 10.4064/sm147-1-4
%G en
%F 10_4064_sm147_1_4
Paul Alton Hagelstein. Local integrability of strong and iterated
maximal functions. Studia Mathematica, Tome 147 (2001) no. 1, pp. 37-50. doi: 10.4064/sm147-1-4

Cité par Sources :