Local integrability of strong and iterated
maximal functions
Studia Mathematica, Tome 147 (2001) no. 1, pp. 37-50
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $M_{\rm S}$ denote the strong maximal operator. Let
$M_{x}$ and $M_{y}$ denote the one-dimensional Hardy–Littlewood
maximal operators in the horizontal and vertical directions in
${\mathbb R}^{2}$. A function $h$ supported on the
unit square $Q = [0,1] \times [0,1]$ is exhibited such that
$\int _{Q}M_{y}M_{x}h \infty $ but $\int _{Q}M_{x}M_{y}h =
\infty $. It is shown that if $f$ is a function supported on $Q$
such that $\int _{Q}M_{y}M_{x}f \infty $ but $\int
_{Q}M_{x}M_{y}f = \infty $, then there exists a set $A$ of
finite measure in ${\mathbb R}^{2}$ such that
$\int _{A}M_{\rm S}f = \infty $.
Keywords:
denote strong maximal operator denote one dimensional hardy littlewood maximal operators horizontal vertical directions mathbb function supported unit square times exhibited int infty int infty shown function supported int infty int infty there exists set finite measure mathbb int infty
Affiliations des auteurs :
Paul Alton Hagelstein  1
@article{10_4064_sm147_1_4,
author = {Paul Alton Hagelstein},
title = {Local integrability of strong and iterated
maximal functions},
journal = {Studia Mathematica},
pages = {37--50},
year = {2001},
volume = {147},
number = {1},
doi = {10.4064/sm147-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-4/}
}
Paul Alton Hagelstein. Local integrability of strong and iterated maximal functions. Studia Mathematica, Tome 147 (2001) no. 1, pp. 37-50. doi: 10.4064/sm147-1-4
Cité par Sources :