An iterative procedure for solving the Riccati equation
$A_2R-RA_1 = A_3+RA_4R$
Studia Mathematica, Tome 147 (2001) no. 1, pp. 15-26
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X_1$ and $X_2$ be complex Banach spaces, and let
$A_1\in {\rm BL}(X_1)$, $A_2\in {\rm BL}(X_2)$,
$A_3\in {\rm BL}(X_1,X_2)$ and $A_4\in {\rm
BL}(X_2,X_1)$. We propose an iterative procedure which is a
modified form of Newton's iterations for obtaining
approximations for the solution $R\in {\rm
BL}(X_1,X_2)$ of the Riccati equation
$A_2R-RA_1 = A_3+RA_4R$, and show that the convergence of the
method is quadratic. The advantage of the present procedure is
that the conditions imposed on the operators $A_1, A_2, A_3,
A_4$ are weaker than the corresponding conditions for Newton's
iterations, considered earlier by Demmel (1987),
Nair (1989) and Nair (1990) in the context of obtaining error
bounds for approximate spectral elements. Also, we discuss an
application of the procedure to spectral approximation under
perturbations of the operator.
Keywords:
complex banach spaces propose iterative procedure which modified form newtons iterations obtaining approximations solution riccati equation r ra convergence method quadratic advantage present procedure conditions imposed operators weaker corresponding conditions newtons iterations considered earlier demmel nair nair context obtaining error bounds approximate spectral elements discuss application procedure spectral approximation under perturbations operator
Affiliations des auteurs :
M. Thamban Nair  1
@article{10_4064_sm147_1_2,
author = {M. Thamban Nair},
title = {An iterative procedure for solving the {Riccati} equation
$A_2R-RA_1 = A_3+RA_4R$},
journal = {Studia Mathematica},
pages = {15--26},
year = {2001},
volume = {147},
number = {1},
doi = {10.4064/sm147-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-2/}
}
TY - JOUR AU - M. Thamban Nair TI - An iterative procedure for solving the Riccati equation $A_2R-RA_1 = A_3+RA_4R$ JO - Studia Mathematica PY - 2001 SP - 15 EP - 26 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm147-1-2/ DO - 10.4064/sm147-1-2 LA - en ID - 10_4064_sm147_1_2 ER -
M. Thamban Nair. An iterative procedure for solving the Riccati equation $A_2R-RA_1 = A_3+RA_4R$. Studia Mathematica, Tome 147 (2001) no. 1, pp. 15-26. doi: 10.4064/sm147-1-2
Cité par Sources :