On the Fejér means
of bounded Ciesielski systems
Studia Mathematica, Tome 146 (2001) no. 3, pp. 227-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the bounded Ciesielski systems, which can be
obtained from the spline systems of order $(m,k)$ in the same
way as the Walsh system arises from the Haar system. It is shown
that the maximal operator of the Fejér means of the
Ciesielski–Fourier series is bounded from the Hardy space $H_p$
to $L_p$ if $1/2 p \infty $ and $m\geq 0$, $|k|\leq m+1$.
Moreover, it is of weak type $(1,1)$. As a consequence, the
Fejér means of the Ciesielski–Fourier series of a
function $f$ converges to $f$ a.e. if $f \in L_1$ as $n\to
\infty $.
Keywords:
investigate bounded ciesielski systems which obtained spline systems order walsh system arises haar system shown maximal operator fej means ciesielski fourier series bounded hardy space infty geq leq moreover weak type consequence fej means ciesielski fourier series function converges infty
Affiliations des auteurs :
Ferenc Weisz 1
@article{10_4064_sm146_3_2,
author = {Ferenc Weisz},
title = {On the {Fej\'er} means
of bounded {Ciesielski} systems},
journal = {Studia Mathematica},
pages = {227--243},
publisher = {mathdoc},
volume = {146},
number = {3},
year = {2001},
doi = {10.4064/sm146-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-3-2/}
}
Ferenc Weisz. On the Fejér means of bounded Ciesielski systems. Studia Mathematica, Tome 146 (2001) no. 3, pp. 227-243. doi: 10.4064/sm146-3-2
Cité par Sources :