Maximal regularity of discrete and continuous time evolution equations
Studia Mathematica, Tome 146 (2001) no. 2, pp. 157-176 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider the maximal regularity problem for the discrete time evolution equation $u_{n+1}-Tu_n=f_n$ for all $n\in {\mathbb N}_0,\ u_0=0$, where $T$ is a bounded operator on a UMD space $X$. We characterize the discrete maximal regularity of $T$ by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup $(T^n)_{n\in {\mathbb N}_0}$ and of the resolvent $R(\lambda , T)$, secondly by the maximal regularity of the continuous time evolution equation $u'(t)-Au(t)=f(t)$ for all $t>0,\ u(0)=0$, where $A:=T-I$. By recent results of Weis, this continuous maximal regularity is characterized by R-boundedness properties of the continuous time semigroup $(e^{t(T-I)})_{t\ge 0}$ and again of the resolvent $R(\lambda , T)$. As an important tool we prove an operator-valued Mikhlin theorem for the torus ${\mathbb T}$ providing conditions on a symbol $M\in L_\infty ({\mathbb T};{{\mathfrak L}}(X))$ such that the associated Fourier multiplier $T_M$ is bounded on $l_p(X)$.
DOI : 10.4064/sm146-2-3
Keywords: consider maximal regularity problem discrete time evolution equation tu mathbb where bounded operator umd space characterize discrete maximal regularity types conditions firstly r boundedness properties discrete time semigroup mathbb resolvent lambda secondly maximal regularity continuous time evolution equation au where t i recent results weis continuous maximal regularity characterized r boundedness properties continuous time semigroup t i again resolvent lambda important tool prove operator valued mikhlin theorem torus mathbb providing conditions symbol infty mathbb mathfrak associated fourier multiplier bounded

Sönke Blunck 1

1 Département des Mathématiques Université de Cergy-Pontoise 2, avenue Adolphe Chauvin 95302 Cergy-Pontoise, France
@article{10_4064_sm146_2_3,
     author = {S\"onke Blunck},
     title = {Maximal regularity of discrete and continuous
time evolution equations},
     journal = {Studia Mathematica},
     pages = {157--176},
     year = {2001},
     volume = {146},
     number = {2},
     doi = {10.4064/sm146-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-3/}
}
TY  - JOUR
AU  - Sönke Blunck
TI  - Maximal regularity of discrete and continuous
time evolution equations
JO  - Studia Mathematica
PY  - 2001
SP  - 157
EP  - 176
VL  - 146
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-3/
DO  - 10.4064/sm146-2-3
LA  - en
ID  - 10_4064_sm146_2_3
ER  - 
%0 Journal Article
%A Sönke Blunck
%T Maximal regularity of discrete and continuous
time evolution equations
%J Studia Mathematica
%D 2001
%P 157-176
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-3/
%R 10.4064/sm146-2-3
%G en
%F 10_4064_sm146_2_3
Sönke Blunck. Maximal regularity of discrete and continuous
time evolution equations. Studia Mathematica, Tome 146 (2001) no. 2, pp. 157-176. doi: 10.4064/sm146-2-3

Cité par Sources :