This article is concerned with the question of whether
Marcinkiewicz multipliers on ${\mathbb R}^{2n}$ give rise to
bilinear multipliers on ${\mathbb R}^n\times {\mathbb R}^n$. We show
that this is not always the case. Moreover, we find necessary
and sufficient conditions for such bilinear multipliers to be
bounded. These conditions in particular imply that a slight
logarithmic modification of the Marcinkiewicz condition gives
multipliers for which the corresponding bilinear operators are
bounded on products of Lebesgue and Hardy spaces.
@article{10_4064_sm146_2_2,
author = {Loukas Grafakos and Nigel J. Kalton},
title = {The {Marcinkiewicz} multiplier condition for
bilinear operators},
journal = {Studia Mathematica},
pages = {115--156},
year = {2001},
volume = {146},
number = {2},
doi = {10.4064/sm146-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-2/}
}
TY - JOUR
AU - Loukas Grafakos
AU - Nigel J. Kalton
TI - The Marcinkiewicz multiplier condition for
bilinear operators
JO - Studia Mathematica
PY - 2001
SP - 115
EP - 156
VL - 146
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-2/
DO - 10.4064/sm146-2-2
LA - en
ID - 10_4064_sm146_2_2
ER -
%0 Journal Article
%A Loukas Grafakos
%A Nigel J. Kalton
%T The Marcinkiewicz multiplier condition for
bilinear operators
%J Studia Mathematica
%D 2001
%P 115-156
%V 146
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm146-2-2/
%R 10.4064/sm146-2-2
%G en
%F 10_4064_sm146_2_2
Loukas Grafakos; Nigel J. Kalton. The Marcinkiewicz multiplier condition for
bilinear operators. Studia Mathematica, Tome 146 (2001) no. 2, pp. 115-156. doi: 10.4064/sm146-2-2