Hermitian powers: A Müntz theorem and extremal algebras
Studia Mathematica, Tome 146 (2001) no. 1, pp. 83-97

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given ${\mathbb S}\subset {\mathbb N}$, let $\widehat {{\mathbb S}}$ be the set of all positive integers $m$ for which $h^m$ is hermitian whenever $h$ is an element of a complex unital Banach algebra $A$ with $h^n$ hermitian for each $n\in {\mathbb S}$. We attempt to characterize when (i) $\widehat {{\mathbb S}}={\mathbb N}$, or (ii) $\widehat {{\mathbb S}}={\mathbb S}$. A key tool is a Müntz-type theorem which gives remarkable conclusions when $1\in {\mathbb S}$ and $\sum \{ 1/n:n\in {\mathbb S}\} $ diverges. The set $\widehat {{\mathbb S}}$ is determined by a single extremal Banach algebra $\mathop {\rm Ea}\nolimits ({\mathbb S})$. We describe this extremal algebra for various ${\mathbb S}$.
DOI : 10.4064/sm146-1-6
Mots-clés : given mathbb subset mathbb widehat mathbb set positive integers which hermitian whenever element complex unital banach algebra hermitian each mathbb attempt characterize widehat mathbb mathbb widehat mathbb mathbb key tool ntz type theorem which gives remarkable conclusions mathbb sum mathbb diverges set widehat mathbb determined single extremal banach algebra mathop nolimits mathbb describe extremal algebra various mathbb

M. J. Crabb 1 ; J. Duncan 2 ; C. M. McGregor 1 ; T. J. Ransford 3

1 Department of Mathematics University of Glasgow Glasgow G12 8QW, U.K.
2 Department of Mathematical Sciences University of Arkansas Fayetteville, AR 72701-1201, U.S.A.
3 Department of Mathematics and Statistics Laval University Québec, Canada G1K 7P4
@article{10_4064_sm146_1_6,
     author = {M. J. Crabb and J. Duncan and C. M. McGregor and T. J. Ransford},
     title = {Hermitian {powers:
A} {M\"untz} theorem and extremal algebras},
     journal = {Studia Mathematica},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2001},
     doi = {10.4064/sm146-1-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/}
}
TY  - JOUR
AU  - M. J. Crabb
AU  - J. Duncan
AU  - C. M. McGregor
AU  - T. J. Ransford
TI  - Hermitian powers:
A Müntz theorem and extremal algebras
JO  - Studia Mathematica
PY  - 2001
SP  - 83
EP  - 97
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/
DO  - 10.4064/sm146-1-6
LA  - de
ID  - 10_4064_sm146_1_6
ER  - 
%0 Journal Article
%A M. J. Crabb
%A J. Duncan
%A C. M. McGregor
%A T. J. Ransford
%T Hermitian powers:
A Müntz theorem and extremal algebras
%J Studia Mathematica
%D 2001
%P 83-97
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/
%R 10.4064/sm146-1-6
%G de
%F 10_4064_sm146_1_6
M. J. Crabb; J. Duncan; C. M. McGregor; T. J. Ransford. Hermitian powers:
A Müntz theorem and extremal algebras. Studia Mathematica, Tome 146 (2001) no. 1, pp. 83-97. doi: 10.4064/sm146-1-6

Cité par Sources :