Hermitian powers:
A Müntz theorem and extremal algebras
Studia Mathematica, Tome 146 (2001) no. 1, pp. 83-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given ${\mathbb S}\subset {\mathbb N}$, let $\widehat
{{\mathbb S}}$ be the set of all positive integers $m$ for which
$h^m$ is hermitian whenever $h$ is an element of a complex
unital Banach algebra $A$ with $h^n$ hermitian for each $n\in
{\mathbb S}$. We attempt to characterize when (i) $\widehat
{{\mathbb S}}={\mathbb N}$, or (ii) $\widehat {{\mathbb
S}}={\mathbb S}$. A key tool is a Müntz-type theorem which gives remarkable conclusions when $1\in
{\mathbb S}$ and $\sum \{ 1/n:n\in {\mathbb
S}\} $ diverges. The set $\widehat
{{\mathbb S}}$ is determined by a single
extremal Banach algebra $\mathop {\rm Ea}\nolimits
({\mathbb S})$. We describe this extremal algebra for various
${\mathbb S}$.
Mots-clés :
given mathbb subset mathbb widehat mathbb set positive integers which hermitian whenever element complex unital banach algebra hermitian each mathbb attempt characterize widehat mathbb mathbb widehat mathbb mathbb key tool ntz type theorem which gives remarkable conclusions mathbb sum mathbb diverges set widehat mathbb determined single extremal banach algebra mathop nolimits mathbb describe extremal algebra various mathbb
Affiliations des auteurs :
M. J. Crabb 1 ; J. Duncan 2 ; C. M. McGregor 1 ; T. J. Ransford 3
@article{10_4064_sm146_1_6,
author = {M. J. Crabb and J. Duncan and C. M. McGregor and T. J. Ransford},
title = {Hermitian {powers:
A} {M\"untz} theorem and extremal algebras},
journal = {Studia Mathematica},
pages = {83--97},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2001},
doi = {10.4064/sm146-1-6},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/}
}
TY - JOUR AU - M. J. Crabb AU - J. Duncan AU - C. M. McGregor AU - T. J. Ransford TI - Hermitian powers: A Müntz theorem and extremal algebras JO - Studia Mathematica PY - 2001 SP - 83 EP - 97 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/ DO - 10.4064/sm146-1-6 LA - de ID - 10_4064_sm146_1_6 ER -
%0 Journal Article %A M. J. Crabb %A J. Duncan %A C. M. McGregor %A T. J. Ransford %T Hermitian powers: A Müntz theorem and extremal algebras %J Studia Mathematica %D 2001 %P 83-97 %V 146 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-6/ %R 10.4064/sm146-1-6 %G de %F 10_4064_sm146_1_6
M. J. Crabb; J. Duncan; C. M. McGregor; T. J. Ransford. Hermitian powers: A Müntz theorem and extremal algebras. Studia Mathematica, Tome 146 (2001) no. 1, pp. 83-97. doi: 10.4064/sm146-1-6
Cité par Sources :