Hankel type operators on the unit disk
Studia Mathematica, Tome 146 (2001) no. 1, pp. 55-68
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study Hankel operators and commutators that are
associated with a symbol and a kernel function. If the kernel
function satisfies an upper bound condition, we obtain a
sufficient condition for commutators to be bounded or compact.
If the kernel function satisfies a local bound condition, the
sufficient condition turns out to be necessary. The analytic and
harmonic Bergman kernels satisfy both conditions, therefore a
recent result by Wu on Hankel operators on harmonic Bergman
spaces is extended.
Keywords:
study hankel operators commutators associated symbol kernel function kernel function satisfies upper bound condition obtain sufficient condition commutators bounded compact kernel function satisfies local bound condition sufficient condition turns out necessary analytic harmonic bergman kernels satisfy conditions therefore recent result hankel operators harmonic bergman spaces extended
Affiliations des auteurs :
Jie Miao 1
@article{10_4064_sm146_1_4,
author = {Jie Miao},
title = {Hankel type operators on the unit disk},
journal = {Studia Mathematica},
pages = {55--68},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2001},
doi = {10.4064/sm146-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-4/}
}
Jie Miao. Hankel type operators on the unit disk. Studia Mathematica, Tome 146 (2001) no. 1, pp. 55-68. doi: 10.4064/sm146-1-4
Cité par Sources :