Some examples of cocycles with
simple continuous singular spectrum
Studia Mathematica, Tome 146 (2001) no. 1, pp. 1-13
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study spectral properties of Anzai skew products
$T_{\varphi }:{\mathbb T}^2\rightarrow {\mathbb T}^2$ defined by
$$T_{\varphi }(z,\omega )=(e^{2\pi i\alpha }z,\varphi (z)
\omega ),$$ where $\alpha $ is irrational and
$\varphi :{\mathbb T}\rightarrow {\mathbb T}$ is a measurable cocycle.
Precisely, we deal with the case where $\varphi $ is piecewise
absolutely continuous such that the sum of all jumps of $\varphi
$ equals zero. It is shown that the simple continuous singular
spectrum of $T_{\varphi }$ on the orthocomplement of the space
of functions depending only on the first variable is a
“typical” property in the above-mentioned class of cocycles, if
$\alpha $ admits a sufficiently fast approximation.
Keywords:
study spectral properties anzai skew products varphi mathbb rightarrow mathbb defined varphi omega alpha varphi omega where alpha irrational varphi mathbb rightarrow mathbb measurable cocycle precisely where varphi piecewise absolutely continuous sum jumps varphi equals zero shown simple continuous singular spectrum varphi orthocomplement space functions depending only first variable typical property above mentioned class cocycles alpha admits sufficiently fast approximation
Affiliations des auteurs :
K. Fr/aczek  1
@article{10_4064_sm146_1_1,
author = {K. Fr/aczek},
title = {Some examples of cocycles with
simple continuous singular spectrum},
journal = {Studia Mathematica},
pages = {1--13},
year = {2001},
volume = {146},
number = {1},
doi = {10.4064/sm146-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm146-1-1/}
}
K. Fr/aczek. Some examples of cocycles with simple continuous singular spectrum. Studia Mathematica, Tome 146 (2001) no. 1, pp. 1-13. doi: 10.4064/sm146-1-1
Cité par Sources :