Local integrated $C$-semigroups
Studia Mathematica, Tome 145 (2001) no. 3, pp. 265-280
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce the notion of a local $n$-times integrated
$C$-semigroup, which unifies the classes of local
$C$-semigroups, local integrated semigroups and local $C$-cosine
functions. We then study its relations to the $C$-wellposedness
of the $(n+1)$-times integrated Cauchy problem and second order
abstract Cauchy problem. Finally, a generation theorem for local
$n$-times integrated $C$-semigroups is given.
Keywords:
introduce notion local n times integrated c semigroup which unifies classes local c semigroups local integrated semigroups local c cosine functions study its relations c wellposedness times integrated cauchy problem second order abstract cauchy problem finally generation theorem local n times integrated c semigroups given
Affiliations des auteurs :
Miao Li 1 ; Fa-lun Huang 2 ; Quan Zheng 1
@article{10_4064_sm145_3_6,
author = {Miao Li and Fa-lun Huang and Quan Zheng},
title = {Local integrated $C$-semigroups},
journal = {Studia Mathematica},
pages = {265--280},
publisher = {mathdoc},
volume = {145},
number = {3},
year = {2001},
doi = {10.4064/sm145-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-6/}
}
Miao Li; Fa-lun Huang; Quan Zheng. Local integrated $C$-semigroups. Studia Mathematica, Tome 145 (2001) no. 3, pp. 265-280. doi: 10.4064/sm145-3-6
Cité par Sources :