Lions–Peetre reiteration formulas for triples and their applications
Studia Mathematica, Tome 145 (2001) no. 3, pp. 219-254

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present, discuss and apply two reiteration theorems for triples of quasi-Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of weighted $L_p$-spaces are proved. By using these results and a wavelet theory approach we calculate $(\theta ,q)$-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces is not stable under interpolation, for triples we obtain stability in the frame of Besov spaces based on Lorentz spaces. Moreover, by using the results and ideas of this paper, we can extend the Stein–Weiss interpolation theorem known for $L_p(\mu )$-spaces with change of measures to Lorentz spaces with change of measures. In particular, the results obtained show that for some problems in analysis the three-space real interpolation approach is really more useful than the usual real interpolation between couples.
DOI : 10.4064/sm145-3-4
Keywords: present discuss apply reiteration theorems triples quasi banach function lattices interpolation results block lorentz spaces triples weighted p spaces proved using these results wavelet theory approach calculate theta spaces triples smooth function spaces besov spaces sobolev spaces etc contrast couples which even scale besov spaces stable under interpolation triples obtain stability frame besov spaces based lorentz spaces moreover using results ideas paper extend stein weiss interpolation theorem known spaces change measures lorentz spaces change measures particular results obtained problems analysis three space real interpolation approach really useful usual real interpolation between couples

Irina Asekritova 1 ; Natan Krugljak 2 ; Lech Maligranda 3 ; Lyudmila Nikolova 4 ; Lars-Erik Persson 3

1 Department of Mathematics Yaroslavl' State Pedagogical University Respublikanskaya 108 150 000 Yaroslavl', Russia
2 Department of Mathematics Yaroslavl' State University Sovetskaya 14 150 000 Yaroslavl', Russia
3 Department of Mathematics Luleå University of Technology S-971 87 Luleå, Sweden
4 Department of Mathematics Sofia University blv. J. Bouchier 5 1164 Sofia, Bulgaria
@article{10_4064_sm145_3_4,
     author = {Irina Asekritova and Natan Krugljak and Lech Maligranda and Lyudmila Nikolova and Lars-Erik Persson},
     title = {Lions{\textendash}Peetre reiteration formulas for triples
and their applications},
     journal = {Studia Mathematica},
     pages = {219--254},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {2001},
     doi = {10.4064/sm145-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-4/}
}
TY  - JOUR
AU  - Irina Asekritova
AU  - Natan Krugljak
AU  - Lech Maligranda
AU  - Lyudmila Nikolova
AU  - Lars-Erik Persson
TI  - Lions–Peetre reiteration formulas for triples
and their applications
JO  - Studia Mathematica
PY  - 2001
SP  - 219
EP  - 254
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-4/
DO  - 10.4064/sm145-3-4
LA  - en
ID  - 10_4064_sm145_3_4
ER  - 
%0 Journal Article
%A Irina Asekritova
%A Natan Krugljak
%A Lech Maligranda
%A Lyudmila Nikolova
%A Lars-Erik Persson
%T Lions–Peetre reiteration formulas for triples
and their applications
%J Studia Mathematica
%D 2001
%P 219-254
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-4/
%R 10.4064/sm145-3-4
%G en
%F 10_4064_sm145_3_4
Irina Asekritova; Natan Krugljak; Lech Maligranda; Lyudmila Nikolova; Lars-Erik Persson. Lions–Peetre reiteration formulas for triples
and their applications. Studia Mathematica, Tome 145 (2001) no. 3, pp. 219-254. doi: 10.4064/sm145-3-4

Cité par Sources :