Spaces of operators and $c_0$
Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218
Bessaga and Pełczyński showed that if $c_0$ embeds in the
dual $X^*$ of a Banach space $X$, then $\ell ^1$ embeds
complementably in $X$, and $\ell ^\infty $ embeds as a subspace
of $X^*$. In this note the Diestel–Faires theorem and
techniques of Kalton are used to show that if $X$ is an
infinite-dimensional Banach space, $Y$ is an arbitrary Banach
space, and $c_0$ embeds in $L(X,Y)$, then $\ell ^\infty $ embeds
in $L(X,Y)$, and $\ell ^1$ embeds complementably in $X\otimes
_{\gamma } Y^*$. Applications to embeddings of $c_0$ in various
spaces of operators are given.
Keywords:
bessaga czy ski showed embeds dual * banach space ell embeds complementably ell infty embeds subspace * note diestel faires theorem techniques kalton infinite dimensional banach space arbitrary banach space embeds ell infty embeds ell embeds complementably otimes gamma * applications embeddings various spaces operators given
Affiliations des auteurs :
P. Lewis  1
@article{10_4064_sm145_3_3,
author = {P. Lewis},
title = {Spaces of operators and $c_0$},
journal = {Studia Mathematica},
pages = {213--218},
year = {2001},
volume = {145},
number = {3},
doi = {10.4064/sm145-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-3/}
}
P. Lewis. Spaces of operators and $c_0$. Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218. doi: 10.4064/sm145-3-3
Cité par Sources :