Spaces of operators and $c_0$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Bessaga and Pełczyński showed that if $c_0$ embeds in the
dual $X^*$ of a Banach space $X$, then $\ell ^1$ embeds
complementably in $X$, and $\ell ^\infty $ embeds as a subspace
of $X^*$. In this note the Diestel–Faires theorem and
techniques of Kalton are used to show that if $X$ is an
infinite-dimensional Banach space, $Y$ is an arbitrary Banach
space, and $c_0$ embeds in $L(X,Y)$, then $\ell ^\infty $ embeds
in $L(X,Y)$, and $\ell ^1$ embeds complementably in $X\otimes
_{\gamma } Y^*$. Applications to embeddings of $c_0$ in various
spaces of operators are given.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
bessaga czy ski showed embeds dual * banach space ell embeds complementably ell infty embeds subspace * note diestel faires theorem techniques kalton infinite dimensional banach space arbitrary banach space embeds ell infty embeds ell embeds complementably otimes gamma * applications embeddings various spaces operators given
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              P. Lewis 1
@article{10_4064_sm145_3_3,
     author = {P. Lewis},
     title = {Spaces of operators and $c_0$},
     journal = {Studia Mathematica},
     pages = {213--218},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {2001},
     doi = {10.4064/sm145-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-3/}
}
                      
                      
                    P. Lewis. Spaces of operators and $c_0$. Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218. doi: 10.4064/sm145-3-3
Cité par Sources :