Spaces of operators and $c_0$
Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Bessaga and Pełczyński showed that if $c_0$ embeds in the dual $X^*$ of a Banach space $X$, then $\ell ^1$ embeds complementably in $X$, and $\ell ^\infty $ embeds as a subspace of $X^*$. In this note the Diestel–Faires theorem and techniques of Kalton are used to show that if $X$ is an infinite-dimensional Banach space, $Y$ is an arbitrary Banach space, and $c_0$ embeds in $L(X,Y)$, then $\ell ^\infty $ embeds in $L(X,Y)$, and $\ell ^1$ embeds complementably in $X\otimes _{\gamma } Y^*$. Applications to embeddings of $c_0$ in various spaces of operators are given.
DOI : 10.4064/sm145-3-3
Keywords: bessaga czy ski showed embeds dual * banach space ell embeds complementably ell infty embeds subspace * note diestel faires theorem techniques kalton infinite dimensional banach space arbitrary banach space embeds ell infty embeds ell embeds complementably otimes gamma * applications embeddings various spaces operators given

P. Lewis 1

1 Department of Mathematics University of North Texas Denton, TX 76203, U.S.A.
@article{10_4064_sm145_3_3,
     author = {P. Lewis},
     title = {Spaces of operators and $c_0$},
     journal = {Studia Mathematica},
     pages = {213--218},
     publisher = {mathdoc},
     volume = {145},
     number = {3},
     year = {2001},
     doi = {10.4064/sm145-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-3/}
}
TY  - JOUR
AU  - P. Lewis
TI  - Spaces of operators and $c_0$
JO  - Studia Mathematica
PY  - 2001
SP  - 213
EP  - 218
VL  - 145
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-3/
DO  - 10.4064/sm145-3-3
LA  - en
ID  - 10_4064_sm145_3_3
ER  - 
%0 Journal Article
%A P. Lewis
%T Spaces of operators and $c_0$
%J Studia Mathematica
%D 2001
%P 213-218
%V 145
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm145-3-3/
%R 10.4064/sm145-3-3
%G en
%F 10_4064_sm145_3_3
P. Lewis. Spaces of operators and $c_0$. Studia Mathematica, Tome 145 (2001) no. 3, pp. 213-218. doi: 10.4064/sm145-3-3

Cité par Sources :