On the relative fundamental solutions for a second order
differential operator on the Heisenberg group
Studia Mathematica, Tome 145 (2001) no. 2, pp. 143-164
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H_{n}$ be the $(2n+1)$-dimensional Heisenberg group,
let $p,q\geq 1$ be integers satisfying $p+q=n$, and let $$
L=\sum _{j=1}^{p}( X_{j}^{2}+Y_{j}^{2}) -\sum
_{j=p+1}^{n}(X_{j}^{2}+Y_{j}^{2}) , $$ where $\{
X_{1},Y_{1},\dots,
X_{n},Y_{n},T\} $ denotes the standard basis of
the Lie algebra of $H_{n}$. We compute explicitly a relative
fundamental solution for $L$.
Keywords:
dimensional heisenberg group geq integers satisfying sum sum where dots denotes standard basis lie algebra compute explicitly relative fundamental solution nbsp
Affiliations des auteurs :
T. Godoy 1 ; L. Saal 1
@article{10_4064_sm145_2_4,
author = {T. Godoy and L. Saal},
title = {On the relative fundamental solutions for a second order
differential operator on the {Heisenberg} group},
journal = {Studia Mathematica},
pages = {143--164},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2001},
doi = {10.4064/sm145-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-4/}
}
TY - JOUR AU - T. Godoy AU - L. Saal TI - On the relative fundamental solutions for a second order differential operator on the Heisenberg group JO - Studia Mathematica PY - 2001 SP - 143 EP - 164 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-4/ DO - 10.4064/sm145-2-4 LA - en ID - 10_4064_sm145_2_4 ER -
%0 Journal Article %A T. Godoy %A L. Saal %T On the relative fundamental solutions for a second order differential operator on the Heisenberg group %J Studia Mathematica %D 2001 %P 143-164 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-4/ %R 10.4064/sm145-2-4 %G en %F 10_4064_sm145_2_4
T. Godoy; L. Saal. On the relative fundamental solutions for a second order differential operator on the Heisenberg group. Studia Mathematica, Tome 145 (2001) no. 2, pp. 143-164. doi: 10.4064/sm145-2-4
Cité par Sources :