The single-point spectrum operators
satisfying Ritt's resolvent condition
Studia Mathematica, Tome 145 (2001) no. 2, pp. 135-142
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that an operator with the properties mentioned
in the title does exist in the space $L_p(0,1)$,
$1\leq p\leq \infty $. The maximal sector for the extended
resolvent condition can be prescribed a priori jointly with the
corresponding order of the exponential growth of the resolvent
in the complementary sector.
Keywords:
shown operator properties mentioned title does exist space leq leq infty maximal sector extended resolvent condition prescribed priori jointly corresponding order exponential growth resolvent complementary sector
Affiliations des auteurs :
Yu. Lyubich 1
@article{10_4064_sm145_2_3,
author = {Yu. Lyubich},
title = {The single-point spectrum operators
satisfying {Ritt's} resolvent condition},
journal = {Studia Mathematica},
pages = {135--142},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2001},
doi = {10.4064/sm145-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-3/}
}
TY - JOUR AU - Yu. Lyubich TI - The single-point spectrum operators satisfying Ritt's resolvent condition JO - Studia Mathematica PY - 2001 SP - 135 EP - 142 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-3/ DO - 10.4064/sm145-2-3 LA - en ID - 10_4064_sm145_2_3 ER -
Yu. Lyubich. The single-point spectrum operators satisfying Ritt's resolvent condition. Studia Mathematica, Tome 145 (2001) no. 2, pp. 135-142. doi: 10.4064/sm145-2-3
Cité par Sources :