New spectral criteria for almost periodic solutions
of evolution equations
Studia Mathematica, Tome 145 (2001) no. 2, pp. 97-111
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present a general spectral decomposition technique for
bounded solutions to inhomogeneous linear periodic evolution
equations of the form $\dot {x}=A(t)x+f(t) \ (*)$,
with $f$ having precompact range, which is then applied to find
new spectral criteria for the existence of almost periodic
solutions with specific spectral properties in the resonant case
where $\overline {e^{i\hskip 1pt{\rm sp}(f)}}$ may
intersect the spectrum of the monodromy operator $P$ of $(*)$
(here ${\rm sp}(f)$ denotes the Carleman spectrum
of $f$). We show that if $(*)$ has a bounded
uniformly continuous mild solution $u$ and $\sigma _{\mit
\Gamma } (P) {\setminus} \overline {e^{i\hskip 1pt{\rm
sp}(f)}}$ is closed, where $\sigma _{\mit \Gamma }
(P)$ denotes the part of $\sigma (P)$ on the unit circle, then
$(*)$ has a bounded uniformly continuous mild solution $w$ such
that $\overline {e^{i\hskip 1pt{\rm sp}(w)}}
=\overline {e^{i\hskip 1pt{\rm sp}(f)}}$. Moreover,
$w$ is a “spectral component” of $u$. This
allows us to solve the general Massera-type problem for almost
periodic solutions. Various spectral criteria for the existence
of almost periodic and quasi-periodic mild solutions to $(*)$
are given.
Keywords:
present general spectral decomposition technique bounded solutions inhomogeneous linear periodic evolution equations form dot f * having precompact range which applied spectral criteria existence almost periodic solutions specific spectral properties resonant where overline hskip may intersect spectrum monodromy operator * here denotes carleman spectrum * has bounded uniformly continuous mild solution sigma mit gamma setminus overline hskip closed where sigma mit gamma denotes part sigma unit circle * has bounded uniformly continuous mild solution overline hskip overline hskip moreover spectral component allows solve general massera type problem almost periodic solutions various spectral criteria existence almost periodic quasi periodic mild solutions * given
Affiliations des auteurs :
Toshiki Naito 1 ; Nguyen Van Minh 2 ; Jong Son Shin 3
@article{10_4064_sm145_2_1,
author = {Toshiki Naito and Nguyen Van Minh and Jong Son Shin},
title = {New spectral criteria for almost periodic solutions
of evolution equations},
journal = {Studia Mathematica},
pages = {97--111},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2001},
doi = {10.4064/sm145-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-1/}
}
TY - JOUR AU - Toshiki Naito AU - Nguyen Van Minh AU - Jong Son Shin TI - New spectral criteria for almost periodic solutions of evolution equations JO - Studia Mathematica PY - 2001 SP - 97 EP - 111 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-1/ DO - 10.4064/sm145-2-1 LA - en ID - 10_4064_sm145_2_1 ER -
%0 Journal Article %A Toshiki Naito %A Nguyen Van Minh %A Jong Son Shin %T New spectral criteria for almost periodic solutions of evolution equations %J Studia Mathematica %D 2001 %P 97-111 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm145-2-1/ %R 10.4064/sm145-2-1 %G en %F 10_4064_sm145_2_1
Toshiki Naito; Nguyen Van Minh; Jong Son Shin. New spectral criteria for almost periodic solutions of evolution equations. Studia Mathematica, Tome 145 (2001) no. 2, pp. 97-111. doi: 10.4064/sm145-2-1
Cité par Sources :