On the powers of Voiculescu's circular element
Studia Mathematica, Tome 145 (2001) no. 1, pp. 85-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result of the paper is that for a circular element
$c$ in a $C^{*}$-probability space, $( c^n,c^{n^{*}}) $ is an
$R$-diagonal pair in the sense of Nica and Speicher for every
$n=1,2,\dots$ The coefficients of the $R$-series
are found to be the generalized Catalan numbers of parameter
$n-1$.
Keywords:
main result paper circular element * probability space * r diagonal pair sense nica speicher every dots coefficients r series found generalized catalan numbers parameter n
Affiliations des auteurs :
Ferenc Oravecz 1
@article{10_4064_sm145_1_6,
author = {Ferenc Oravecz},
title = {On the powers of {Voiculescu's} circular element},
journal = {Studia Mathematica},
pages = {85--95},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2001},
doi = {10.4064/sm145-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-6/}
}
Ferenc Oravecz. On the powers of Voiculescu's circular element. Studia Mathematica, Tome 145 (2001) no. 1, pp. 85-95. doi: 10.4064/sm145-1-6
Cité par Sources :