On individual subsequential ergodic theorem
in von Neumann algebras
Studia Mathematica, Tome 145 (2001) no. 1, pp. 55-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We use a non-commutative generalization of the Banach
Principle to show that the classical individual ergodic theorem
for subsequences generated by means of uniform sequences can be
extended to the von Neumann algebra setting.
Keywords:
non commutative generalization banach principle classical individual ergodic theorem subsequences generated means uniform sequences extended von neumann algebra setting
Affiliations des auteurs :
Semyon Litvinov 1 ; Farrukh Mukhamedov 2
@article{10_4064_sm145_1_3,
author = {Semyon Litvinov and Farrukh Mukhamedov},
title = {On individual subsequential ergodic theorem
in von {Neumann} algebras},
journal = {Studia Mathematica},
pages = {55--62},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2001},
doi = {10.4064/sm145-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-3/}
}
TY - JOUR AU - Semyon Litvinov AU - Farrukh Mukhamedov TI - On individual subsequential ergodic theorem in von Neumann algebras JO - Studia Mathematica PY - 2001 SP - 55 EP - 62 VL - 145 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-3/ DO - 10.4064/sm145-1-3 LA - en ID - 10_4064_sm145_1_3 ER -
Semyon Litvinov; Farrukh Mukhamedov. On individual subsequential ergodic theorem in von Neumann algebras. Studia Mathematica, Tome 145 (2001) no. 1, pp. 55-62. doi: 10.4064/sm145-1-3
Cité par Sources :