Parabolic wavelet transforms associated with the singular
heat operators $-{\mit \Delta }_{\gamma
}+{\partial /\partial t}$ and $I-{\mit \Delta }_{\gamma
}+{\partial /\partial t}$, where ${\mit \Delta }_{\gamma
}=\sum _{k=1}^{n} {\partial ^2/\partial x_{k}^{2}}+({2\gamma
/x_{n}}) {\partial /\partial x_{n}}$, are introduced. These
transforms are defined in terms of the relevant generalized
translation operator. An analogue of the Calderón
reproducing formula is established. New inversion formulas are
obtained for generalized parabolic potentials representing
negative powers of the singular heat operators.
@article{10_4064_sm145_1_1,
author = {Ilham A. Aliev and Boris Rubin},
title = {Parabolic potentials and wavelet transforms
with the generalized translation},
journal = {Studia Mathematica},
pages = {1--16},
year = {2001},
volume = {145},
number = {1},
doi = {10.4064/sm145-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-1/}
}
TY - JOUR
AU - Ilham A. Aliev
AU - Boris Rubin
TI - Parabolic potentials and wavelet transforms
with the generalized translation
JO - Studia Mathematica
PY - 2001
SP - 1
EP - 16
VL - 145
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-1/
DO - 10.4064/sm145-1-1
LA - en
ID - 10_4064_sm145_1_1
ER -
%0 Journal Article
%A Ilham A. Aliev
%A Boris Rubin
%T Parabolic potentials and wavelet transforms
with the generalized translation
%J Studia Mathematica
%D 2001
%P 1-16
%V 145
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm145-1-1/
%R 10.4064/sm145-1-1
%G en
%F 10_4064_sm145_1_1
Ilham A. Aliev; Boris Rubin. Parabolic potentials and wavelet transforms
with the generalized translation. Studia Mathematica, Tome 145 (2001) no. 1, pp. 1-16. doi: 10.4064/sm145-1-1