Intersection properties for cones of monotone
and convex functions with respect to the couple $(L_p, {
\rm BMO})$
Studia Mathematica, Tome 144 (2001) no. 3, pp. 245-273
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to some aspects of the real
interpolation method in the case of triples $(X_0, X_1, Q)$
where $ \overline {
X}:=(X_0, X_1)$ is a Banach couple and $Q$ is a convex cone. The
first fundamental result of the theory, the
interpolation theorem, holds in this situation (for linear
operators preserving the cone structure). The second one, the
reiteration theorem, holds only under some
conditions on the triple. One of these conditions, the so-called
intersection property, is studied for
cones with respect to $(L_p, {\rm BMO})$.
Keywords:
paper devoted aspects real interpolation method triples where overline banach couple convex cone first fundamental result theory interpolation theorem holds situation linear operators preserving cone structure second reiteration theorem holds only under conditions triple these conditions so called intersection property studied cones respect bmo
Affiliations des auteurs :
Inna Kozlov 1
@article{10_4064_sm144_3_4,
author = {Inna Kozlov},
title = {Intersection properties for cones of monotone
and convex functions with respect to the couple $(L_p, {
\rm BMO})$},
journal = {Studia Mathematica},
pages = {245--273},
year = {2001},
volume = {144},
number = {3},
doi = {10.4064/sm144-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-4/}
}
TY - JOUR
AU - Inna Kozlov
TI - Intersection properties for cones of monotone
and convex functions with respect to the couple $(L_p, {
\rm BMO})$
JO - Studia Mathematica
PY - 2001
SP - 245
EP - 273
VL - 144
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-4/
DO - 10.4064/sm144-3-4
LA - en
ID - 10_4064_sm144_3_4
ER -
%0 Journal Article
%A Inna Kozlov
%T Intersection properties for cones of monotone
and convex functions with respect to the couple $(L_p, {
\rm BMO})$
%J Studia Mathematica
%D 2001
%P 245-273
%V 144
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-3-4/
%R 10.4064/sm144-3-4
%G en
%F 10_4064_sm144_3_4
Inna Kozlov. Intersection properties for cones of monotone
and convex functions with respect to the couple $(L_p, {
\rm BMO})$. Studia Mathematica, Tome 144 (2001) no. 3, pp. 245-273. doi: 10.4064/sm144-3-4
Cité par Sources :