Analytic joint spectral radius in a solvable Lie algebra of operators
Studia Mathematica, Tome 144 (2001) no. 2, pp. 153-167
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We introduce the concept of analytic spectral radius for a family of operators indexed by some finite measure space. This spectral radius is compared with the algebraic and geometric spectral radii when the operators belong to some finite-dimensional solvable Lie algebra. We describe several situations when the three spectral radii coincide. These results extend well known facts concerning commuting $n$-tuples of operators.
DOI : 10.4064/sm144-2-4
Keywords: introduce concept analytic spectral radius family operators indexed finite measure space spectral radius compared algebraic geometric spectral radii operators belong finite dimensional solvable lie algebra describe several situations three spectral radii coincide these results extend known facts concerning commuting n tuples operators

Daniel Beltiţă  1

1 Institute of Mathematics “Simion Stoilow" of the Romanian Academy P.O. Box 1-764 RO-70700 Bucureşti, Romania
@article{10_4064_sm144_2_4,
     author = {Daniel Belti\c{t}\u{a}},
     title = {Analytic joint spectral radius in a
solvable {Lie} algebra of operators},
     journal = {Studia Mathematica},
     pages = {153--167},
     year = {2001},
     volume = {144},
     number = {2},
     doi = {10.4064/sm144-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-4/}
}
TY  - JOUR
AU  - Daniel Beltiţă
TI  - Analytic joint spectral radius in a
solvable Lie algebra of operators
JO  - Studia Mathematica
PY  - 2001
SP  - 153
EP  - 167
VL  - 144
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-4/
DO  - 10.4064/sm144-2-4
LA  - en
ID  - 10_4064_sm144_2_4
ER  - 
%0 Journal Article
%A Daniel Beltiţă
%T Analytic joint spectral radius in a
solvable Lie algebra of operators
%J Studia Mathematica
%D 2001
%P 153-167
%V 144
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-4/
%R 10.4064/sm144-2-4
%G en
%F 10_4064_sm144_2_4
Daniel Beltiţă. Analytic joint spectral radius in a
solvable Lie algebra of operators. Studia Mathematica, Tome 144 (2001) no. 2, pp. 153-167. doi: 10.4064/sm144-2-4

Cité par Sources :