$CM$-Selectors for pairs of oppositely semicontinuous multivalued maps with ${\Bbb L}_p$-decomposable values
Studia Mathematica, Tome 144 (2001) no. 2, pp. 135-152

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if $F$ is an $H$-upper semicontinuous multivalued map on a separable metric space $X$, $G$ is a lower semicontinuous multivalued map on $X$, both $F$ and $G$ take nonconvex $L_p(T, E)$-decomposable closed values, the measure space $T$ with a $\sigma $-finite measure $\mu $ is nonatomic, $1\le p \infty $, $L_p(T, E)$ is the Bochner–Lebesgue space of functions defined on $T$ with values in a Banach space $E$, $F(x) \cap G(x)\not = \emptyset $ for all $x \in X$, then there exists a $CM$-selector for the pair $(F,G)$, i.e. a continuous selector for $G$ (as in the theorem of H. Antosiewicz and A. Cellina (1975), A. Bressan (1980), S. /Lojasiewicz, Jr. (1982), generalized by A. Fryszkowski (1983), A. Bressan and G. Colombo (1988)) which is simultaneously an $\varepsilon $-approximate continuous selector for $F$ (as in the theorem of A. Cellina, G. Colombo and A. Fonda (1986), A. Bressan and G. Colombo (1988)).
DOI : 10.4064/sm144-2-3
Keywords: present continuous selection theorem which unifies sense known selection theorems namely prove h upper semicontinuous multivalued map separable metric space lower semicontinuous multivalued map nonconvex decomposable closed values measure space sigma finite measure nonatomic infty bochner lebesgue space functions defined values banach space cap emptyset there exists cm selector pair continuous selector theorem antosiewicz cellina bressan nbsp lojasiewicz generalized fryszkowski bressan nbsp colombo which simultaneously varepsilon approximate continuous selector theorem cellina nbsp colombo fonda bressan nbsp colombo

Hôǹg Thái Nguyêñ 1 ; Maciej Juniewicz 1 ; Jolanta Ziemińska 1

1 Institute of Mathematics Szczecin University Wielkopolska 15 70-451 Szczecin, Poland
@article{10_4064_sm144_2_3,
     author = {H\^oǹg Th\'ai Nguy\^e\~n and Maciej Juniewicz and Jolanta Ziemi\'nska},
     title = {$CM${-Selectors} for pairs of oppositely semicontinuous
multivalued maps with ${\Bbb L}_p$-decomposable values},
     journal = {Studia Mathematica},
     pages = {135--152},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2001},
     doi = {10.4064/sm144-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-3/}
}
TY  - JOUR
AU  - Hôǹg Thái Nguyêñ
AU  - Maciej Juniewicz
AU  - Jolanta Ziemińska
TI  - $CM$-Selectors for pairs of oppositely semicontinuous
multivalued maps with ${\Bbb L}_p$-decomposable values
JO  - Studia Mathematica
PY  - 2001
SP  - 135
EP  - 152
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-3/
DO  - 10.4064/sm144-2-3
LA  - en
ID  - 10_4064_sm144_2_3
ER  - 
%0 Journal Article
%A Hôǹg Thái Nguyêñ
%A Maciej Juniewicz
%A Jolanta Ziemińska
%T $CM$-Selectors for pairs of oppositely semicontinuous
multivalued maps with ${\Bbb L}_p$-decomposable values
%J Studia Mathematica
%D 2001
%P 135-152
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-3/
%R 10.4064/sm144-2-3
%G en
%F 10_4064_sm144_2_3
Hôǹg Thái Nguyêñ; Maciej Juniewicz; Jolanta Ziemińska. $CM$-Selectors for pairs of oppositely semicontinuous
multivalued maps with ${\Bbb L}_p$-decomposable values. Studia Mathematica, Tome 144 (2001) no. 2, pp. 135-152. doi: 10.4064/sm144-2-3

Cité par Sources :