On $(C,1)$ summability for Vilenkin-like systems
Studia Mathematica, Tome 144 (2001) no. 2, pp. 101-120
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a common generalization of the Walsh system,
Vilenkin system, the character system of the group of $2$-adic
($m$-adic) integers, the product system of normalized coordinate
functions for continuous irreducible unitary representations of
the coordinate groups of noncommutative Vilenkin groups, the
UDMD product systems (defined by F. Schipp) and some other
systems. We prove that for integrable functions $\sigma _n f\to
f$ $(n\to \infty )$ a.e., where $\sigma _nf$ is the $n$th
$(C,1)$ mean of $f$. (For the character system of
the group of $m$-adic integers, this proves a more than 20 years
old conjecture of M. H. Taibleson
[24, p. 114].) Define the maximal operator $\sigma
^*f := \sup_n|\sigma _nf|$. We prove that
$\sigma ^*$ is of type $(p,p)$ for all $1 p\le \infty $ and of
weak type $(1,1)$. Moreover, $\| \sigma
^*f\| _1\le c\| f\|
_{H}$, where $H$ is the Hardy space.
Keywords:
common generalization walsh system vilenkin system character system group adic m adic integers product system normalized coordinate functions continuous irreducible unitary representations coordinate groups noncommutative vilenkin groups udmd product systems defined schipp other systems prove integrable functions sigma infty where sigma nth mean character system group m adic integers proves years old conjecture taibleson define maximal operator sigma *f sup sigma prove sigma * type infty weak type moreover sigma *f where hardy space
Affiliations des auteurs :
G. Gát  1
@article{10_4064_sm144_2_1,
author = {G. G\'at},
title = {On $(C,1)$ summability for {Vilenkin-like} systems},
journal = {Studia Mathematica},
pages = {101--120},
year = {2001},
volume = {144},
number = {2},
doi = {10.4064/sm144-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm144-2-1/}
}
G. Gát. On $(C,1)$ summability for Vilenkin-like systems. Studia Mathematica, Tome 144 (2001) no. 2, pp. 101-120. doi: 10.4064/sm144-2-1
Cité par Sources :