Rank is not a spectral invariant
Studia Mathematica, Tome 98 (1991) no. 3, pp. 227-230

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-98-3-227-230

Sebastien Ferenczi 1 ; Mariusz Lemańczyk 1

1
@article{10_4064_sm_98_3_227_230,
     author = {Sebastien Ferenczi and Mariusz Lema\'nczyk},
     title = {Rank is not a spectral invariant},
     journal = {Studia Mathematica},
     pages = {227--230},
     publisher = {mathdoc},
     volume = {98},
     number = {3},
     year = {1991},
     doi = {10.4064/sm-98-3-227-230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-98-3-227-230/}
}
TY  - JOUR
AU  - Sebastien Ferenczi
AU  - Mariusz Lemańczyk
TI  - Rank is not a spectral invariant
JO  - Studia Mathematica
PY  - 1991
SP  - 227
EP  - 230
VL  - 98
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-98-3-227-230/
DO  - 10.4064/sm-98-3-227-230
LA  - en
ID  - 10_4064_sm_98_3_227_230
ER  - 
%0 Journal Article
%A Sebastien Ferenczi
%A Mariusz Lemańczyk
%T Rank is not a spectral invariant
%J Studia Mathematica
%D 1991
%P 227-230
%V 98
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-98-3-227-230/
%R 10.4064/sm-98-3-227-230
%G en
%F 10_4064_sm_98_3_227_230
Sebastien Ferenczi; Mariusz Lemańczyk. Rank is not a spectral invariant. Studia Mathematica, Tome 98 (1991) no. 3, pp. 227-230. doi: 10.4064/sm-98-3-227-230

Cité par Sources :