Rank is not a spectral invariant
Studia Mathematica, Tome 98 (1991) no. 3, pp. 227-230
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Sebastien Ferenczi 1 ; Mariusz Lemańczyk 1
@article{10_4064_sm_98_3_227_230,
author = {Sebastien Ferenczi and Mariusz Lema\'nczyk},
title = {Rank is not a spectral invariant},
journal = {Studia Mathematica},
pages = {227--230},
publisher = {mathdoc},
volume = {98},
number = {3},
year = {1991},
doi = {10.4064/sm-98-3-227-230},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-98-3-227-230/}
}
TY - JOUR AU - Sebastien Ferenczi AU - Mariusz Lemańczyk TI - Rank is not a spectral invariant JO - Studia Mathematica PY - 1991 SP - 227 EP - 230 VL - 98 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-98-3-227-230/ DO - 10.4064/sm-98-3-227-230 LA - en ID - 10_4064_sm_98_3_227_230 ER -
Sebastien Ferenczi; Mariusz Lemańczyk. Rank is not a spectral invariant. Studia Mathematica, Tome 98 (1991) no. 3, pp. 227-230. doi: 10.4064/sm-98-3-227-230
Cité par Sources :