Best Fredholm perturbation theorems
Studia Mathematica, Tome 90 (1988) no. 3, pp. 175-190

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-90-3-175-190

M. Schechter 1 ; Robert Whitley 1

1
@article{10_4064_sm_90_3_175_190,
     author = {M. Schechter and Robert Whitley},
     title = {Best {Fredholm} perturbation theorems},
     journal = {Studia Mathematica},
     pages = {175--190},
     publisher = {mathdoc},
     volume = {90},
     number = {3},
     year = {1988},
     doi = {10.4064/sm-90-3-175-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-90-3-175-190/}
}
TY  - JOUR
AU  - M. Schechter
AU  - Robert Whitley
TI  - Best Fredholm perturbation theorems
JO  - Studia Mathematica
PY  - 1988
SP  - 175
EP  - 190
VL  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-90-3-175-190/
DO  - 10.4064/sm-90-3-175-190
LA  - en
ID  - 10_4064_sm_90_3_175_190
ER  - 
%0 Journal Article
%A M. Schechter
%A Robert Whitley
%T Best Fredholm perturbation theorems
%J Studia Mathematica
%D 1988
%P 175-190
%V 90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-90-3-175-190/
%R 10.4064/sm-90-3-175-190
%G en
%F 10_4064_sm_90_3_175_190
M. Schechter; Robert Whitley. Best Fredholm perturbation theorems. Studia Mathematica, Tome 90 (1988) no. 3, pp. 175-190. doi: 10.4064/sm-90-3-175-190

Cité par Sources :