On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces
Studia Mathematica, Tome 75 (1982) no. 2, pp. 103-119

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-75-2-103-119

Andreas Benndorf 1

1
@article{10_4064_sm_75_2_103_119,
     author = {Andreas Benndorf},
     title = {On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear {Fr\'echet} spaces},
     journal = {Studia Mathematica},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {1982},
     doi = {10.4064/sm-75-2-103-119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-75-2-103-119/}
}
TY  - JOUR
AU  - Andreas Benndorf
TI  - On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces
JO  - Studia Mathematica
PY  - 1982
SP  - 103
EP  - 119
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-75-2-103-119/
DO  - 10.4064/sm-75-2-103-119
LA  - en
ID  - 10_4064_sm_75_2_103_119
ER  - 
%0 Journal Article
%A Andreas Benndorf
%T On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces
%J Studia Mathematica
%D 1982
%P 103-119
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-75-2-103-119/
%R 10.4064/sm-75-2-103-119
%G en
%F 10_4064_sm_75_2_103_119
Andreas Benndorf. On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces. Studia Mathematica, Tome 75 (1982) no. 2, pp. 103-119. doi: 10.4064/sm-75-2-103-119

Cité par Sources :