Individual boundedness condition for positive definite sesquilinear form valued kernels
Studia Mathematica, Tome 74 (1982) no. 3, pp. 293-302

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-74-3-293-302

J. Stochel 1

1
@article{10_4064_sm_74_3_293_302,
     author = {J. Stochel},
     title = {Individual boundedness condition for positive definite sesquilinear form valued kernels},
     journal = {Studia Mathematica},
     pages = {293--302},
     publisher = {mathdoc},
     volume = {74},
     number = {3},
     year = {1982},
     doi = {10.4064/sm-74-3-293-302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-74-3-293-302/}
}
TY  - JOUR
AU  - J. Stochel
TI  - Individual boundedness condition for positive definite sesquilinear form valued kernels
JO  - Studia Mathematica
PY  - 1982
SP  - 293
EP  - 302
VL  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-74-3-293-302/
DO  - 10.4064/sm-74-3-293-302
LA  - en
ID  - 10_4064_sm_74_3_293_302
ER  - 
%0 Journal Article
%A J. Stochel
%T Individual boundedness condition for positive definite sesquilinear form valued kernels
%J Studia Mathematica
%D 1982
%P 293-302
%V 74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-74-3-293-302/
%R 10.4064/sm-74-3-293-302
%G en
%F 10_4064_sm_74_3_293_302
J. Stochel. Individual boundedness condition for positive definite sesquilinear form valued kernels. Studia Mathematica, Tome 74 (1982) no. 3, pp. 293-302. doi: 10.4064/sm-74-3-293-302

Cité par Sources :