An approximation problem in $L^{p} ([0,2π])$, 2 p ∞
Studia Mathematica, Tome 70 (1981) no. 3, pp. 221-224

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-70-3-221-224

Daniel Oberlin 1

1
@article{10_4064_sm_70_3_221_224,
     author = {Daniel Oberlin},
     title = {An approximation problem in $L^{p} ([0,2\ensuremath{\pi}])$, 2 < p < \ensuremath{\infty}},
     journal = {Studia Mathematica},
     pages = {221--224},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {1981},
     doi = {10.4064/sm-70-3-221-224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-70-3-221-224/}
}
TY  - JOUR
AU  - Daniel Oberlin
TI  - An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞
JO  - Studia Mathematica
PY  - 1981
SP  - 221
EP  - 224
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-70-3-221-224/
DO  - 10.4064/sm-70-3-221-224
LA  - en
ID  - 10_4064_sm_70_3_221_224
ER  - 
%0 Journal Article
%A Daniel Oberlin
%T An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞
%J Studia Mathematica
%D 1981
%P 221-224
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-70-3-221-224/
%R 10.4064/sm-70-3-221-224
%G en
%F 10_4064_sm_70_3_221_224
Daniel Oberlin. An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞. Studia Mathematica, Tome 70 (1981) no. 3, pp. 221-224. doi: 10.4064/sm-70-3-221-224

Cité par Sources :