An approximation problem in $L^{p} ([0,2π])$, 2 p ∞
Studia Mathematica, Tome 70 (1981) no. 3, pp. 221-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_sm_70_3_221_224,
author = {Daniel Oberlin},
title = {An approximation problem in $L^{p} ([0,2\ensuremath{\pi}])$, 2 < p < \ensuremath{\infty}},
journal = {Studia Mathematica},
pages = {221--224},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {1981},
doi = {10.4064/sm-70-3-221-224},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-70-3-221-224/}
}
TY - JOUR
AU - Daniel Oberlin
TI - An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞
JO - Studia Mathematica
PY - 1981
SP - 221
EP - 224
VL - 70
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-70-3-221-224/
DO - 10.4064/sm-70-3-221-224
LA - en
ID - 10_4064_sm_70_3_221_224
ER -
Daniel Oberlin. An approximation problem in $L^{p} ([0,2π])$, 2 < p < ∞. Studia Mathematica, Tome 70 (1981) no. 3, pp. 221-224. doi: 10.4064/sm-70-3-221-224
Cité par Sources :