On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
Studia Mathematica, Tome 69 (1981) no. 2, pp. 155-158
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
N. Fava 1 ; E. Gatto 1 ; C. Gutiérrez 1
@article{10_4064_sm_69_2_155_158,
author = {N. Fava and E. Gatto and C. Guti\'errez},
title = {On the strong maximal function and {Zygmund's} class $L(log^{+} L)^{n}$},
journal = {Studia Mathematica},
pages = {155--158},
year = {1981},
volume = {69},
number = {2},
doi = {10.4064/sm-69-2-155-158},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/}
}
TY - JOUR
AU - N. Fava
AU - E. Gatto
AU - C. Gutiérrez
TI - On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
JO - Studia Mathematica
PY - 1981
SP - 155
EP - 158
VL - 69
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/
DO - 10.4064/sm-69-2-155-158
LA - en
ID - 10_4064_sm_69_2_155_158
ER -
%0 Journal Article
%A N. Fava
%A E. Gatto
%A C. Gutiérrez
%T On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
%J Studia Mathematica
%D 1981
%P 155-158
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/
%R 10.4064/sm-69-2-155-158
%G en
%F 10_4064_sm_69_2_155_158
N. Fava; E. Gatto; C. Gutiérrez. On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$. Studia Mathematica, Tome 69 (1981) no. 2, pp. 155-158. doi: 10.4064/sm-69-2-155-158
Cité par Sources :