On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
Studia Mathematica, Tome 69 (1981) no. 2, pp. 155-158 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

DOI : 10.4064/sm-69-2-155-158

N. Fava 1 ; E. Gatto 1 ; C. Gutiérrez 1

1
@article{10_4064_sm_69_2_155_158,
     author = {N. Fava and E. Gatto and C. Guti\'errez},
     title = {On the strong maximal function and {Zygmund's} class $L(log^{+} L)^{n}$},
     journal = {Studia Mathematica},
     pages = {155--158},
     year = {1981},
     volume = {69},
     number = {2},
     doi = {10.4064/sm-69-2-155-158},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/}
}
TY  - JOUR
AU  - N. Fava
AU  - E. Gatto
AU  - C. Gutiérrez
TI  - On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
JO  - Studia Mathematica
PY  - 1981
SP  - 155
EP  - 158
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/
DO  - 10.4064/sm-69-2-155-158
LA  - en
ID  - 10_4064_sm_69_2_155_158
ER  - 
%0 Journal Article
%A N. Fava
%A E. Gatto
%A C. Gutiérrez
%T On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$
%J Studia Mathematica
%D 1981
%P 155-158
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-69-2-155-158/
%R 10.4064/sm-69-2-155-158
%G en
%F 10_4064_sm_69_2_155_158
N. Fava; E. Gatto; C. Gutiérrez. On the strong maximal function and Zygmund's class $L(log^{+} L)^{n}$. Studia Mathematica, Tome 69 (1981) no. 2, pp. 155-158. doi: 10.4064/sm-69-2-155-158

Cité par Sources :