The algebra of compact operators does not have any finite-codimensional ideal
Studia Mathematica, Tome 66 (1979) no. 1, pp. 33-36

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-66-1-33-36

Pierre de la Harpe 1

1
@article{10_4064_sm_66_1_33_36,
     author = {Pierre de la Harpe},
     title = {The algebra of compact operators does not have any finite-codimensional ideal},
     journal = {Studia Mathematica},
     pages = {33--36},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1979},
     doi = {10.4064/sm-66-1-33-36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/}
}
TY  - JOUR
AU  - Pierre de la Harpe
TI  - The algebra of compact operators does not have any finite-codimensional ideal
JO  - Studia Mathematica
PY  - 1979
SP  - 33
EP  - 36
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/
DO  - 10.4064/sm-66-1-33-36
LA  - en
ID  - 10_4064_sm_66_1_33_36
ER  - 
%0 Journal Article
%A Pierre de la Harpe
%T The algebra of compact operators does not have any finite-codimensional ideal
%J Studia Mathematica
%D 1979
%P 33-36
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/
%R 10.4064/sm-66-1-33-36
%G en
%F 10_4064_sm_66_1_33_36
Pierre de la Harpe. The algebra of compact operators does not have any finite-codimensional ideal. Studia Mathematica, Tome 66 (1979) no. 1, pp. 33-36. doi: 10.4064/sm-66-1-33-36

Cité par Sources :