The algebra of compact operators does not have any finite-codimensional ideal
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 66 (1979) no. 1, pp. 33-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_sm_66_1_33_36,
     author = {Pierre de la Harpe},
     title = {The algebra of compact operators does not have any finite-codimensional ideal},
     journal = {Studia Mathematica},
     pages = {33--36},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {1979},
     doi = {10.4064/sm-66-1-33-36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/}
}
                      
                      
                    TY - JOUR AU - Pierre de la Harpe TI - The algebra of compact operators does not have any finite-codimensional ideal JO - Studia Mathematica PY - 1979 SP - 33 EP - 36 VL - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/ DO - 10.4064/sm-66-1-33-36 LA - en ID - 10_4064_sm_66_1_33_36 ER -
%0 Journal Article %A Pierre de la Harpe %T The algebra of compact operators does not have any finite-codimensional ideal %J Studia Mathematica %D 1979 %P 33-36 %V 66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-66-1-33-36/ %R 10.4064/sm-66-1-33-36 %G en %F 10_4064_sm_66_1_33_36
Pierre de la Harpe. The algebra of compact operators does not have any finite-codimensional ideal. Studia Mathematica, Tome 66 (1979) no. 1, pp. 33-36. doi: 10.4064/sm-66-1-33-36
Cité par Sources :
